

Designation: D 5582 - 00

Standard Test Method for Determining Formaldehyde Levels from Wood Products Using a Desiccator¹

This standard is issued under the fixed designation D 5582; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers a small scale procedure for measuring formaldehyde emission potential from wood products. The formaldehyde level is determined by collecting air-borne formaldehyde in a small distilled water reservoir within a closed desiccator. The quantity of formaldehyde is determined by a modification of the National Institute for Occupational Safety and Health (NIOSH) 3500 chromotropic acid test procedure. Other analytical procedures may be used to determine formaldehyde emission potential provided that such methods give similar results to the chromotropic acid procedure. However, the test results and test report must be properly qualified and the analytical procedure employed must be noted. Procedures based on acetylacetone and pararosaniline have been found to give similar results to chromotropic acid in other test methods used in determining formaldehyde emission potential from wood products (see Test Method E 1333).

1.2 Wood products typically evaluated by this test method are made with urea-formaldehyde adhesives and include particleboard, hardwood, plywood, and medium-density fiberboard. This test method is used for product quality control and is a small bench test method that correlates with the large-scale acceptance test for determining formaldehyde levels from wood products, Test Method E 1333. The general desiccator testing procedure may be modified for different conditioning times to accommodate its use in manufacturing quality control. However, the test results must be properly qualified and the conditioning time employed must be noted.

Note 1—If modifications are made to the conditioning period for quality control purposes, it is important that the modification is consistently applied. Otherwise, the results may not be comparable.

- 1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appro-

priate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 6 and 8.2.5.

2. Referenced Documents

- 2.1 ASTM Standards:
- E 77 Test Method for the Inspection and Verification of Thermometers²
- E 337 Test Method for Measuring Humidity With a Psychrometer (The Measurement of Wet-Bulb and Dry-Bulb Temperatures)³
- E 1333 Test Method for Determining Formaldehyde Levels from Wood Products Under Defined Test Conditions Using a Large Chamber⁴
- 2.2 HUD Document:
- 24 CFR 3280, Manufactured Home Construction and Safety Standards, Federal Register, Vol 49, No. 155⁵
- 2.3 NIOSH Document:

Formaldehyde Method 3500, U.S. Department of Health, and Human Services⁵

2.4 Other Documents:

Minnesota Statutes Section 144.495, 325F.18, and 325F.181, Formaldehyde Gases in Building Materials⁶

3. Significance and Use

3.1 Limitations on formaldehyde levels have been established for wood panel building products made with ureaformaldehyde adhesives and permanently installed in homes or used as components in kitchen cabinets and for similar industrial products. This test method is used in conjunction with the test method referenced by HUD Rules and Regulations 24 CFR 3280 for manufactured housing and by Minnesota Statutes Section 144.495 for housing units and building materials. This test method provides a means of testing small-size samples to determine formaldehyde emission potential.

¹ This test method is under the jurisdition of ASTM Committee D-7 on Wood and is the direct responsibility of Subcommittee D07.03 on Panel Products.

Current edition approved Apr. 10, 2000. Published June 2000. Originally published as D 5582-94. Last previous edition D 5582-94.

² Annual Book of ASTM Standards, Vol 14.03.

³ Annual Book of ASTM Standards, Vol 11.03.

⁴ Annual Book of ASTM Standards, Vol 04.07.

⁵ Available from Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402.

⁶ Available from Print Communications, Dept. of Administration, 117 University Ave., St. Paul, MN 55155.

- 3.2 This test method incorporates a desiccator, with the desiccant removed, having a 250-mm (10-in.) inside diameter and a volume of approximately 10.5 L (641 in.³) with the desiccator lid in place. Conditions controlled in the procedure are as follows:
 - 3.2.1 Conditioning of panel products prior to testing,
- 3.2.2 Specified number, size, and edge sealing of wood specimens to be placed in the desiccator,
 - 3.2.3 Test desiccator temperature, and
- 3.2.4 Samples from the 25-mL distilled water collection medium in the petri dish bottom are analyzed for formaldehyde at the end of a 2-h period in the closed desiccator.
- 3.3 This test method employs a single set of environmental conditions to assess formaldehyde emission potential from certain wood products. When the relationship between desiccator test values and large-chamber test values are to be determined, the values for the specific wood panel product type shall be plotted. This test method does allow a comparison of formaldehyde levels from different products for the same use.

Note 2—Care must be exercised in the extension of the results to actual formaldehyde emission from products under actual use conditions.

4. Interferences

4.1 The NIOSH 3500 analytical method lists phenols as a negative interference when present at an 8:1 excess over formaldehyde. Modifications in the analytical procedure shall be made when this test method is used to accurately determine the formaldehyde emission potential from wood products made with phenol-formaldehyde adhesive systems.^{7, 8}

5. Apparatus

- 5.1 Desiccator—The interior volume of the desiccator shall be 10.5 L (641 in.³). Any desiccant shall have been removed, the interior of the desiccator thoroughly cleaned, and the porcelain desiccator plate replaced in the desiccator. The bearing areas of the desiccator and desiccator lid shall be greased so that the container will be air tight during the duration of the 2-h test.
- 5.2 Petri Dish and Beaker—A clean 400-mL beaker to be inverted as a reservoir support and the bottom of a 100 by 20-mm petri as a distilled water reservoir dish shall be available for each desiccator test.
- 5.3 Test Room or Area—A room or test area capable of being maintained at 24 ± 1 °C (75 ± 2 °F) shall be available for conducting desiccator tests.

Note 3—If liquid-in-glass thermometers are used for determining or checking the temperature of the test area, see Test Method E 77.

5.4 Examples of acceptable reagents, materials, and equipment are provided in Appendix X1.

6. Hazards

6.1 Chromotropic Acid Reagent Treatment (see 8.2.4 and A3.5)—During this hazardous operation, the operator shall

wear rubber gloves, apron, and a full face mask or be protected from splashing by a transparent shield such as a hood window. The solution becomes extremely hot during the addition of sulfuric acid. Add slowly to avoid loss of sample due to splattering.

6.2 Cleaning Chemicals for Glassware—Appropriate precautions shall be taken if cleaning chemicals are considered to be hazardous.

7. Test Specimens

- 7.1 Use eight 70 ± 2 by 127 ± 2 -mm (2 $\frac{3}{4}$ by 5-in.) by panel thickness specimens for each desiccator test. Cut specimens from the sample panel or panel segment to obtain adequate representation of areas within the panel or panel segment. The fresh cut edges and ends of each specimen shall be at least 25 mm (1 in.) from the edges and ends of the sample panel or panel segment. When a product has significantly different emission characteristics for each surface and has only one surface exposed to the building space, also use sixteen 70 by 127-mm (2 $\frac{3}{4}$ by 5-in.) test pieces to prepare eight 70 by 127-mm double-piece back-to-back specimens.
- 7.2 Specimen Edge Sealing—Remove sawdust and loose splinters from each test specimen. Coat the edges and ends of each single or double-piece specimen by immersion in melted paraffin wax. Apply at least two coats. The wax shall cover no more than 5 mm (3/16 in.) of either face around the coated perimeter.
- 7.3 Specimen Conditioning—Then condition the specimens on edge, spaced apart, so air can freely circulate across all surfaces for seven days ± 4 h at 24 ± 1.7 °C (75 ± 3 °F) and 50 \pm 10 % relative humidity. The formaldehyde concentration in the air within 30 cm (12 in.) of where the specimens are conditioned shall be not more than 0.1 ppm during the conditioning period.
- Note 4—Conditioning time less than seven days and specimens with edges and ends not coated with paraffin wax may be used for quality control or informational testing; however these and other test method modifications shall be clearly indicated in the test report. Modifications to conditioning time or edge treatment, or both, will affect the test results; therefore, correlation to other test methods may need to be re-established.
- Note 5— If liquid-in-glass thermometers or psychrometers, or both, are used for determining or checking the temperature or the relative humidity, or both, of the conditioning area, see Test Methods E 77 and E 337.

8. Procedure

Note 6—A list of test apparatus and chemical reagents are provided in Appendix X1.

- 8.1 Test Procedure for Materials:
- 8.1.1 Conduct tests in a room maintained at 24 ± 0.6 °C (75 \pm 1°F). Equilibrate the desiccator, petri dish bottom, and distilled water to 24 ± 0.6 °C.
- 8.1.2 Before each test, wipe the desiccator with a clean rag or paper towel moistened with distilled water, and then dry with a clean dry rag or paper towel.

Note 7—Formaldehyde can be used as a constituent of wet-strength resins for paper and of permanent-press resins for fabrics. The type of rag or paper towel selected for cleaning must be formaldehyde-free.

⁷ Hakes, D., Johnson, G., and Marhevka, J., *Procedure for Elimination of Phenol Interference in the Chromotropic Acid Method for Formaldehyde*, American Industrial Hygiene Association, April 1984.

⁸ Technical Bulletin No. 415, National Council of the Paper Industry for Air and Stream Improvement Inc. (NCASI), 1983.

- 8.1.3 Apply a light coating of vacuum grease to the desiccator lid and desiccator. Avoid excessive use of vacuum grease.
- 8.1.4 Arrange specimens as prepared in 7.1 and 7.2 and condition as in 7.3 on top of the porcelain desiccator plate around an inverted 400-mL beaker as a 100 \pm 7-mm (4 \pm ½-in.) high support inside the desiccator for the petri dish bottom distilled water reservoir. Specimens should be arranged so that air has access to all surfaces and edges.
- 8.1.5 Pipet 25 mL of distilled water into the bottom portion of petri dish.
- 8.1.6 Carefully lower the petri dish bottom containing distilled water into the desiccator until it rests upon the inverted 400-mL beaker.
- 8.1.7 Slide the desiccator lid into place making sure a good seal is obtained.
 - 8.1.8 Observe and record the time.
- 8.1.9 Maintain the desiccator test room at 24 ± 0.6 °C (75 \pm 1°F). Record the temperature at 30-min intervals. Alternatively, use a continuous temperature recorder. Report any temperature range deviations.
- 8.1.10 After 120 ± 1 min, remove the desiccator lid and carefully remove the petri dish. Proceed immediately to 8.2.1. When running multiple desiccator tests, initiate 8.2.1 within 10 min, otherwise cover the petri dish or dishes with parafilm while awaiting analysis.
 - 8.2 Analysis of Water Samples:
- 8.2.1 Gently swirl the petri dish and pipet 4 mL of the solution into each of two 16 by 150-mm screw cap test tubes for duplicate analysis. Label to avoid subsequent error. Alternatively, use three tubes for triplicate analysis.
- 8.2.2 Pipet 4 mL of distilled water into a 16 by 150-mm screw capped test tube to act as a "blank."
- 8.2.3 Add 0.1 mL of 1 % chromotropic acid reagent to each test tube and shake to mix.
- 8.2.4 Slowly and carefully pipet 6.0 mL concentrated sulfuric acid into each test tube (**Precaution**—See 6.1.) and allow to flow down the side of test tube. Allow the volumetric pipet to drain. **Do not blow out.** Before placing caps on test tubes, check the condition of the polytetrafluoroethylene (PTFE) cap liners to make sure they are clean and not deteriorated.
- 8.2.5 Ensure adequate mixing by use of a vibrating laboratory mixer or other means. Mixing is complete when there is no sign of stratification. If absorbance readings routinely exceed 1.0 or if spectrophotometric analysis is performed within 2 h, heat capped test tubes to 95°C or place in a boiling water bath for 15 \pm 2 min to ensure that the chemical reaction is complete. After removal, allow the test tubes to cool to room temperature. Carefully vent test tubes to release pressure. (Warning—Avoid rapid mixing as heating and pressure will increase and potentially break the test tube.)
- 8.2.6 Allow the tubes to cool to room temperature. Do not accelerate the cooling. Avoid cooling tubes in direct sunlight as this may alter color chromogen development. Transfer the solution to cuvettes (if necessary). At this point, small bubbles may be rising through the solution. Do not make absorbance readings until the solution is clear.
 - 8.3 Absorbance Readings:

- 8.3.1 Prior to performing this test method for the first time, a calibration curve shall be developed. See Annex A3.
- 8.3.2 Standardize the spectrophotometer to 100 % transmittance (zero absorbance) using distilled water at 580 nm in accordance with the instrument's operating instructions. This gives an indication that the instrument is in proper working order. Read the "blank" against distilled water because an absorbance above 0.040 (using a 12-mm cell path length) or above 0.030 (using a 10-mm cell path length) for the reagent blank indicates contamination of the reagent blank or improper solution preparation.
- 8.3.3 Zero the instrument on the reagent blank if absorbance is not greater than 0.040 (12-mm path length) or 0.030 (10-mm path length) compared to distilled water as zero. Alternately, leave the instrument zeroed on distilled water, and subtract the absorbance of the reagent blank from the absorbance of the sample solutions.
- 8.3.4 Read and record absorbance at 580 nm of each sample prepared (see 9.1 for calculation).
- 8.3.5 When a precise desiccator value is required and the sample solution is found to fall outside the stated absorbance range (greater than 1.0 or as determined in A3.12), repeat 8.2.1-8.3.4. Otherwise, report the desiccator value associated with a greater than 1.0 absorbance value. When 8.2.1-8.3.4 are repeated, appropriately dilute the sample solution to fall within the preferred absorbance range of the spectrophotometer. Make dilution by pipetting x mL of text solution to (4-x mL) of distilled water for a total of 4 mL (that is, 1 mL of test solution + 3 mL distilled water = 4 mL total). Rerunning the distilled water blank" is not required. Use average sample determinations as the sample absorbance. Read micrograms (µg) of formaldehyde from the calibration curve. (See Annex A3.)

9. Calculation

9.1 Calculate formaldehyde concentration in weight per unit volume in the solution from the petri dish aliquot in the desiccator:

$$c_t = \frac{c_s}{D \times 4} \tag{1}$$

where:

 $c_t = \mu g$ of formaldehyde per mL of sampled solution,

 $c_s = \mu g$ of formaldehyde in 4-mL aliquot of sample read

from calibration curve, and

D = dilution factor, for example:

$$\frac{1 \text{ mL } (original \ volume)}{4 \text{ mL } (final \ volume)} D = 0.25 \tag{2}$$

If no dilution is made, D = 1.

9.2 When the temperature at which the test is conducted differs from 24 by ½ °C (75 by ½ °F) or more, adjust the desiccator value obtained to a standard temperature of 24°C (75°F) using a formula developed by Berge et al. 9 Annex A1 contains a table of conversion factors for use at different

⁹ Berge, A., Mellagaard B., Hanetho, P., and Ormstad, E., *Formaldehyde Release from Particleboard—Evaluation of a Mathematical Model*, Holz Als Roh-und Werkstoff 38, 1980, pp. 252–255.

observed test temperatures as calculated using this formula. The observed test temperature is the average temperature for the total 2-h test period.

10. Report

- 10.1 Report the following information:
- 10.1.1 Test number,
- 10.1.2 The manner in which samples were shipped or stored, or both: wrapped separately in vapor barrier, wrapped collectively in vapor barrier, waster sheet on top and bottom, or with test surfaces unprotected,
- 10.1.3 Name of product manufacturer or name of company submitting sample(s), or both, and date of manufacture,
- 10.1.4 Description of test material to include generic product name, thickness, if surface finished or sealed (both surfaces should be described), and special treatment (if known),
- 10.1.5 Specimen conditioning details to include temperature (and range), relative humidity (and range), and conditioning time to nearest hour,
- 10.1.6 Average room temperature during the conduct of the test (see 8.1.8),
- 10.1.7 Blank reading (desiccator value of distilled water in desiccator containing no samples),
- 10.1.8 If sample solution was read undiluted or diluted, including dilution factor,
- 10.1.9 Desiccator value in micrograms per millilitre at test conditions; desiccator value corrected to 75°F (24°C), rounded to nearest 0.01 µg/mL,
- 10.1.10 Any deviations from the standard desiccator method shall be noted when the test is used for quality control. Notations of such deviations shall include, but not be limited

to, conditioning time, temperature and relative humidity during conditioning, and specimen edge wax treatment,

10.1.11 The analytical method employed if different from the modified NIOSH 3500 chromotropic acid test procedure,

10.1.12 Name and model number of spectrophotometer, and 10.1.13 Date of test.

11. Precision and Bias

- 11.1 Variation in the formaldehyde emission from products evaluated by this test method is a consequence of variations in the materials tested, in the conduct of the test method and the analytical procedure. Limited information does exist to show the variability expected between test results when the method is used in one or more laboratories.
- 11.1.1 *Repeatability (Within Laboratory)*—Test results indicate a precision of 0.06 µg/mL on the same product sample. Product manufacturing variability affects test results. ¹⁰
- 11.1.2 Reproducibility (Between Laboratory)—A test series involving five laboratories on three matched board sets from each of two products in which temperature and relative humidity conditioning of specimens was controlled showed an average coefficient of variation of 15 % for products ranging in desiccator values from 0.31 to 0.69 µg/mL.¹⁰

12. Keywords

12.1 air-borne; chromotropic acid; formaldehyde levels; small-scale; wood products

ANNEXES

(Mandatory Information)

A1. TEMPERATURE CONVERSION FACTORS FOR FORMALDEHYDE

A1.1 The following conversion table is based on the Berge et al⁹ formula to correct formaldehyde concentrations for temperature:

$$C = C_o \cdot e^{-R(1/t - 1/t_o)}$$
 (A1.1)

or:

TABLE A1.1 Temperature Conversion Table for Formaldehyde

Note 1—The Berge et al equation⁹ is an exponential function. The greater the variance between actual and corrected temperature, the greater the potential error. These conversion factors shall not be applied beyond the specified test temperature range of $24 \pm 2^{\circ}$ C (75 $\pm 4^{\circ}$ F).

Actual		To Convert To 249C (7E9T) Multiply by	Actual		To Convert To 249C (759F) Multiply by
°C	(°F)	To Convert To 24°C (75°F) Multiply by	°C	(°F)	To Convert To 24°C (75°F) Multiply by
22.00	(71.6)	1.25	24.00	(75.2)	1.00
22.25	(72.1)	1.22	24.25	(75.7)	0.97
22.50	(72.5)	1.18	24.50	(76.1)	0.95
22.75	(73.0)	1.15	24.75	(76.6)	0.92
23.00	(73.4)	1.12	25.00	(77.0)	0.90
23.25	(73.9)	1.09	25.25	(77.5)	0.87
23.50	(74.3)	1.06	25.50	(77.9)	0.85
23.75	(74.8)	1.03	25.75	(78.4)	0.82
	, ,		26.00	(78.8)	0.80

¹⁰ Report of Preliminary Interlaboratory Formaldehyde Large Chamber Round Robin, Hardwood Plywood Manufacturers Association and National Particleboard Association, February 1987.

$$C_o = C \cdot e^{R(1/t - 1/t_o)} \tag{A1.2}$$

where:

C = test formaldehyde concentration level,

 C_o = corrected formaldehyde concentration level,

e = natural log base,

R = coefficient of temperature (9799),

 $t = \text{actual temperature}, ^{\circ} K, \text{ and}$

 t_o = corrected temperature, $^{\circ}$ K.

A2. STANDARD SOLUTIONS A AND B

A2.1 Standardization of Formaldehyde Standard Solution A (1.0 mg/mL):

Note A2.1—Sodium sulfite solution can age, thus the 1-M sodium sulfite solution shall be adjusted to a $9.5~\mathrm{pH}$ before adding to Standard Solution A aliquots.

A2.1.1 Pipet 2.70 mL of a 37.0 % formaldehyde solution into a 1-L volumetric flask. Dilute to mark with freshly distilled water and mix well. This solution, A, is stable for at least one month.

A2.1.2 Calibrate the pH meter with standard buffer solution of pH 9.0.

A2.1.3 Pipet two 50-mL aliquots of Formaldehyde Standard Solution A into two 150-mL beakers for duplicate analysis and add 20 mL of 1 *M* sodium sulfite to each beaker.

A2.1.4 Place the solution on a magnetic stirrer. Immerse pH electrodes into the solution and carefully titrate with 0.1 Nhydrochloric acid (HCl) to a pH of 9.5. Record the volume of HCl and corresponding pH intermittently. Make a graph of pH versus volume of HCl.

A2.1.5 Calculate the concentration, C_A , of Formaldehyde Standard Solution A in milligrams per millilitre as follows:

$$C_A = \frac{V \times N \times 30.03 \text{ (mg per milliequivalent)}}{50 \text{ (mL)}}$$
 (A2.1)

where:

V = mL of 0.100 N HCl required at pH of 9.5 from the graph prepared in A2.1.4, and

N = normality of HCl.

The concentration of Standard Solution A will be the average of the two analyses conducted.

A2.2 Standard Solution B:

A2.2.1 Prepare Formaldehyde Standard B by diluting 1 mL of Standard Solution A to 100 mL in a volumetric flask using distilled water. This standard is stable for 8 h.

A2.2.2 Calculate the concentration of formaldehyde in Standard Solution B in micrograms per millilitre as follows:

$$C_B = \frac{C_A \times 1000 \times 1 \, mL}{100} \tag{A2.2}$$

A2.2.3 Record the value.

A3. CALIBRATION CURVE

A3.1 Label seven 16 by 150-mm screw capped Test Tubes 1, 2, 3, 4, 5, 6, 7.

A3.2 Pipet the following volumes of distilled water into test tubes:

A3.2.1 Tube 1—4.0 mL;

A3.2.2 Tube 2—3.9 mL;

A3.2.3 *Tube 3*—3.7 mL;

A3.2.4 Tube 4—3.5 mL;

A3.2.5 Tube 5—3.3 mL;

A3.2.6 Tube 6-3.0 mL; and

A3.2.7 Tube 7-2.0 mL.

A3.3 Pipet the following volumes of Standard Solution B into test tubes:

A3.3.1 *Tube 1*—0 mL;

A3.3.2 Tube 2—0.10 mL;

A3.3.3 Tube 3—0.30 mL;

A3.3.4 Tube 4—0.50 mL;

A3.3.5 Tube 5—0.70 mL;

A3.3.6 Tube 6-1.00 mL; and

A3.3.7 Tube 7—2.00 mL.

A3.3.8 Note that no solution B was added to test tube 1. Test Tube 1 will be the reagent blank.

A3.4 Add 0.1 mL of 1 % chromotropic acid reagent to each test tube. Shake the tube after addition.

A3.5 Slowly and *carefully* pipet 6.0 mL of concentrated sulfuric acid into each test tube (**Warning**—See 6.1.). Allow to flow down the side of the test tube. Allow the volumetric pipet to drain. *Do not blow out*. Before placing caps on the test tubes, check the condition of PTFE cap liners to make sure they are clean and not deteriorated. Replace if necessary.

A3.6 Slowly and gently agitate the test tubes to effect mixing. Mixing is complete when there is no sign of stratification. Rapid mixing will cause heating and a pressure increase that can break the test tube. If absorbance readings routinely exceed 1.0 or if spectrophotometric analysis is performed within 2 h, heat capped test tubes to 95°C or place in a boiling water bath for 15 ± 2 min to ensure that the chemical reaction is complete. After removal, allow the test tubes to cool to room temperature. Carefully vent test tubes to release pressure.

A3.7 Allow the tubes to cool to room temperature. Do not accelerate the cooling process. Avoid cooling tubes in direct sunlight as this may alter color chromogen development. Transfer the solution to cuvettes (if necessary). At this point, small bubbles may be rising through the solution. Do not make

absorbance readings until the solution is clear.

A3.8 Standardize the spectrophotometer to 100 % transmittance (zero absorbance) using distilled water at 580 nm in accordance with the instrument's operating instructions. Read the reagent blank (Tube 1) against distilled water. A high absorbance for the reagent blank indicates contamination of reagent blank or improper solution preparation. If absorbance for the reagent blank compared to distilled water is above 0.040 (using a 12-mm cell path length) or above 0.030 (using a 10-mm cell path length), repeat the entire standardization procedure.

A3.9 Zero the instrument on reagent blank (Tube 1) if the absorbance is not greater than 0.040 (12-mm path length) or 0.030 (10-mm path length) compared to distilled water as zero. Alternately, the instrument shall be left zeroed on distilled water, and the absorbance of the reagent blank subtracted from the absorbance of the standard solutions.

A3.10 Read and record absorbance at 580 nm of each standard prepared (Tubes 2 through 7).

A3.11 Plot absorbance (*y* axis) against micrograms (*x* axis) of formaldehyde in the color-developed solution. Note the amount of formaldehyde in micrograms is based upon standardization carried out on Solution A.

Note A3.1—The calibration curve as described in this annex is provided as an example of a curve appropriate for low-emitting urea-formaldehyde-bonded wood panel products. If absorbance readings are routinely observed outside of this range, the calibration curve should incorporate appropriate volumes of Standard Solution B (see Annex A2) to reflect that range.

A3.12 Preparation of calibration curve A3.11 and Note A3.1 shall be repeated at least once more and the final calibration line shall reflect the composite of the determinations (or the curve shall be calculated using a linear least square fitting technique). The calibration curve may not be linear at high formaldehyde concentrations (high absorbance readings). If the plot in A3.11 shows the last few points deviating from linearity, omit the points from calculations or repeat the entire procedure. Further, the curve shall be frequently checked based on changes in reagent lot numbers, past experience, data scattering, or instrument instability.

APPENDIX

(Nonmandatory Information)

X1. REAGENTS, MATERIALS, AND EQUIPMENT FOUND SUITABLE FOR USE

X1.1 Air-Sampling Apparatus

Note X1.1—Other apparatus and instruments may be used if equivalent results are anticipated.

X1.1.1 Glass Desiccator, 250-mm inside diameter, total volume approximately $10.5~\rm{L}.^{11}$

X1.1.2 Porcelain Desiccator Plate, 230-mm diameter. 11

X1.1.3 Petri Dish, glass, bottom only, 100 by 20 mm.¹¹

X1.1.4 Beaker, 400 mL, glass. 11

X1.2 Analytical Apparatus

X1.2.1 Spectrophotometer. 12

X1.2.2 Spectrochek, ¹¹ for calibration of the spectrophotometer

X1.2.3 Beaker, 150, mL, low-form. 11

X1.2.4 Volumetric Flask, 1000 mL.¹¹

X1.2.5 Volumetric Flask, 100 mL.11

X1.2.6 Volumetric Flask, two 10 mL.11

X1.2.7 Buret, 25 mL, Class A.¹¹

X1.2.8 pH Meter. 11

X1.2.9 Magnetic Stirrer. 11

X1.2.10 Pipet, volumetric, 4 mL.11

X1.2.11 Pipet, volumetric, 50 mL, Class A.11

X1.2.12 Pipet, volumetric, 6 mL, Class A.11

X1.2.13 Pipet, long-tip Mohr type, 2 by 0.01 mL.11

11 Available from scientific supply houses.

¹² Milton Roy Spectronic 20 Spectrophotometer, available from scientific supply houses, or equivalent, has been found suitable for this purpose.

X1.2.14 Pipet, Mohr, 10 by 0.1 mL.11

X1.2.15 Safety Bulb, for pipeting.¹¹

X1.2.16 *Test Tubes*, 16 by 150 mm, with polytetra-fluoroethylene-(PTFE) lined screw caps. 11

X1.2.17 For repetitive analyses of sample solutions and for added safety, use of automatic pipetting equipment may be desirable. The following have been found suitable:

X1.2.17.1 *Brinkman Dispensers*, volume 0.1 to 0.5 mL (for chromotropic acid), volume 1 to 10 mL (for sulfuric acid), and volume to 25 mL (for distilled water).¹¹

X1.2.17.2 Oxford Macro-Set Pipet. 11

X1.2.17.3 Tips, 250, for transferring 4-mL aliquots. 11

X1.3 Reagents

X1.3.1 *Chromotropic Acid Reagent*—Dissolve 0.10 g of chromotropic acid (4,5-dihydroxy-2,7-naphthalene-disulfonic acid disodium salt) in freshly distilled water and dilute to 10 mL. This solution is to be made up daily.

X1.3.2 *Sulfuric Acid*, concentrated, reagent grade. Nitrate concentration shall be less than 10 ppm.

X1.3.3 Buffer Solution, pH 9.0.

X1.3.4 Hydrochloric Acid (HCl) 0.100 N, standard.

X1.3.5 Sodium Sulfite Solution, 1.0 M—Dissolve 12.67 g anhydrous sodium sulfite (ACS assay 99.5 %) in a 100-mL volumetric flask and dilute to the mark with freshly distilled water. The correct amount to be dissolved should be 12.6/ACS assay of the anhydrous sodium sulfite actually being used (read assay from bottle label).

X1.3.6 Formaldehyde Solution, 37 % W/W.

X1.3.7 Mild Liquid Soap.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).