BS 1747-12: 1993 ISO 10313: 1993

Methods for

Measurement of air pollution —

Part 12: Determination of the mass concentration of ozone in ambient air: chemiluminescence method

UDC 614.71:535.379.08:546.214

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

Committees responsible for this British Standard

The preparation of this British Standard was entrusted by the Environment and Pollution Standards Policy Committee (EPC/-) to Technical Committee EPC/35, upon which the following bodies were represented:

Association of Consulting Scientists BCIRA **British Cement Corporation** British Coal Corporation British Gas plc **Combustion Engineering Association** Department of Health Department of the Environment (Her Majesty's Inspectorate of Pollution) Department of Trade and Industry (Laboratory of the Government Chemist) Department of Trade and Industry (Warren Spring Laboratory) Engineering Equipment and Materials Users' Association GAMBICA (BEAMA Ltd.) Health and Safety Executive Institute of Petroleum Institution of Environmental Health Officers Institution of Gas Engineers National Society for Clean Air Royal Society of Chemistry

The following bodies were also represented in the drafting of the standard, through subcommittees and panels:

Asbestosis Research Council British Steel plc Fibre Cement Manufacturers' Association Ltd. Institute of Energy Lead Development Association

This British Standard, having been prepared under the direction of the Environment and Pollution Standards Policy Committee, was published under the authority of the Standards Board and comes into effect on 15 October 1993

Amendments issued since publication

© BSI 08-1999	Amd. No.	Date	Comments
The following BSI references relate to the work on this standard: Committee reference EPC/35 Draft for comment 91/51946 DC ISBN 0 580 22577 1			

Contents

		Page	
Co	mmittees responsible	Inside front cover	
Na	tional foreword	ii	
1	Scope	1	
2	Definition	1	
3	Principle	1	
4	Reagents and materials	1	
5	Apparatus	2	
6	Procedure	4	
7	Expression of results	5	
8	Test report	6	
An	nex A (informative) Typical performance characteristics		
and specifications for the chemiluminescence ozone analyser			
Annex B (informative) Bibliography			
Figure 1 — Schematic diagram of a chemiluminescence ozone analyser			
Fig	gure 2 — Schematic diagram of a typical ultraviolet		
pho	photometric calibration system		

National foreword

This Part of BS 1747, which has been prepared under the direction of the Environment and Pollution Standards Policy Committee, is identical with ISO 10313:1993 *Ambient air* — *Determination of the mass concentration of ozone* — *Chemiluminescence method*, published by the International Organization for Standardization (ISO) with the active participation and approval of the UK.

This Part of BS 1747 is one of a series relating to air quality arising from UK participation in the work of ISO/TC 146. Methods for the determination of particular constituents of ambient air will be published as further Parts of this British Standard. Topics relating to air quality characteristics will be published as Parts of BS 6069 *Characterization of air quality*.

Textual errors. When adopting the text of the International Standard, the textual errors given below were discovered. They have been marked in the text and have been reported to ISO in a proposal to amend the text of the international standard.

In 4.4, note 4, line 1, "on" should be "of".

In 7.1, in the list of symbols following the equation, "p" should be "P".

A British Standard does not purport to include all the necessary provisions of a contract. Users of British Standards are responsible for their correct application.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

Summary of pages

This document comprises a front cover, an inside front cover, pages i and ii, pages 1 to 7 and a back cover.

This standard has been updated (see copyright date) and may have had amendments incorporated. This will be indicated in the amendment table on the inside front cover.

1 Scope

1.1 General

This International Standard specifies a chemiluminescence method for the determination of the mass concentration of ozone in ambient air.

The method is applicable to the determination of the mass concentration of ozone between $2 \ \mu g/m^3 \ [0,001 \ ppm(V/V)]$ and $10 \ mg/m^3 \ [5 \ ppm(V/V)]$ at the reference conditions of 25 °C and 101,3 kPa.

Ultraviolet (UV) photometry is specified as the primary calibration method because of its proven accuracy and specificity to ozone. The use of transfer standards is allowed if they have been previously calibrated against the primary calibration method.

1.2 Limitations

The chemiluminescent reaction of ozone with ethylene is not subject to interference from any of the common air pollutants. However, particulate matter, if not removed, will accumulate in the sampling line and may cause a measurable destruction of ozone. If particulate matter is allowed to enter the reaction chamber of the analyser, it will not only scatter the emitted light but will also accumulate on the optical window, thereby causing further attenuation of the emitted light. Also, any nitrogen(II) oxide in the sampled air will to some extent react with the ambient ozone; therefore, the time during which the ambient air remains in the sampling line must be sufficiently short to keep this effect to a minimum.

NOTE 1 It has been reported by some researchers that, at about 80 % relative humidity and 22 °C, the responses for some commercially available chemiluminescence analysers were about 10 % higher than that for dry air. However, comparisons of ambient ozone measurements using commercially available chemiluminescence and UV-photometric analysers showed no significant differences. This suggests that, in practice, any errors associated with calibrations using dry air are compensated by other effects.

2 Definition

For the purposes of this International Standard, the following definition applies.

2.1

transfer standard

an apparatus (transportable) with associated operational procedures that is capable of accurately measuring or reproducing ozone concentration standards which are quantitatively related to the authoritative primary standard

3 Principle

The air sample is drawn continuously, at a constant flow rate, through a particle filter before it enters the chemiluminescence analyser. It then flows into a reaction chamber where it is mixed with an excess flow of ethylene. Ozone and ethylene react instantaneously to produce light in the visible region with a maximum at a wavelength of about 400 nm. The emitted light intensity is proportional to the concentration of ozone in the air sample and is measured by a photomultiplier tube. The resulting voltage is amplified, displayed, and calibrated in terms of the ambient ozone concentration.

4 Reagents and materials

4.1 Sampling line

The sampling line shall be made of material that is inert to ozone, such as glass or fluorocarbon polymer, and it shall be as short as possible to keep the time the air sample remains them to a minimum. Any ambient nitrogen(II) oxide present in the air sample will react with some of the ozone during the time it remains in the sampling line. This decay of ozone is a complicated function of the mass concentration ratio, $\rho(O_3)/\rho(NO)$, and the difference in mass concentrations, $\rho(O_3) - \rho(NO)$. Calculations have shown that, if the residence time is less than 0,5 s, the decay in initial ozone will be less than 1 % for most ambient ozone and nitrogen(II) oxide concentrations encountered. Hence, it is recommended that the sampling line length and pumping speed be chosen such that the time the air remains within the sampling line is less than 0,5 s. However, in situations of routine monitoring, a time of up to 5 s is allowed.

Any sampling line or manifold preceding the filter shall be clean. Proper precautions shall be taken to prevent condensation inside the sampling line, for example, by heating the line.

4.2 Particle filter

The filter and its support shall be made of material inert to ozone, such as fluorocarbon polymer, and it shall remove all particles likely to alter the performance of the analyser, it shall be changed on a regular basis, depending on the concentrations of ambient particles at the sampling site. This is necessary because excessive accumulation of particles on the filter can cause loss of ozone from the air sample and an excessive pressure drop across the filter.

NOTE 2 Frequently, a filter pore size of 5 µm is used.

NOTE 3 Generally, new filters need some time to be conditioned by the ambient atmosphere. As a result, measured mass concentrations of ozone have been observed to decrease temporarily by 5 % to 10 % for periods of 5 min to 15 min immediately following filter changes.

4.3 Ethylene, of minimum purity 99,5 %.

WARNING — Ethylene has a lower explosive limit of 27,5 l/m³. Any excess shall be vented outdoors or, if necessary, chemically removed, especially at sites where hydrocarbons are being measured. Observe standard safety precautions when using this flammable gas.

4.4 *Zero air*, required in the analyser calibration procedure.

It shall be free of ozone, nitrogen oxides and any other interfering substance that can cause an undesired positive or negative response in either the ultraviolet photometer or the chemiluminescence analyser.

The response of the ozone chemiluminescence analyser is affected by the oxygen content in the gas sample. Therefore, if synthetic air is used, the oxygen content shall be within ± 2 % of the normal atmospheric concentration of 20,9 %. NOTE 4 Details on a scrubbing system for making zero¹⁾ air from ambient air may be found in [1] and [2] in Annex B.

5 Apparatus

5.1 Chemiluminescence analyser, consisting of sample and ethylene flow inlet systems, a constant temperature reaction chamber coupled to a photomultiplier detector and accompanying signal processing electronics. A flowmeter, if it is not an integral part of the analyser, shall be available for verifying that the flow meets the specifications of the instrument.

A schematic diagram of a typical system is shown in Figure 1.

5.2 Apparatus for calibration, an ozone calibration system shall be used. (See the simplified schematic diagram in Figure 2.)

NOTE 5 An equivalent system would be one that uses only the air line with the ozone generator to bring zero and ozonized air to the manifold, hence eliminating the need for the four-ports two-way valve.

¹⁾ See national foreword for details of textual error.

5.2.1 Ultraviolet photometer, for primary calibration only consisting of a low pressure mercury discharge lamp, a single or dual absorption cell, and detection and signal processing electronics. It shall be meticulously maintained. To prevent ozone generation within the absorption cell, a high-silica glass window (or equivalent) shall be inserted between the mercury lamp and the absorption cell to remove the 185 nm Hg line but transmit the 253,7 nm Hg measurement line. The detector shall be capable of measuring the transmittance through the absorption cell at a wavelength of 253,7 nm, with less than 0,5 % of the radiation detected being from other wavelengths (vacuum photodiodes with a caesium telluride sensitization meet this requirement). The length of the light path through the absorption cell shall be known to an accuracy better than 0,5 %, and the cell and associated plumbing shall be designed to minimize surface loss of ozone. Provision shall be made for measuring the temperature and pressure of the gas in the absorption cell (see 5.2.8 and 5.2.9). See the simplified schematic diagram of a photometer system in Figure 2.

5.2.2 Ozone generator, which generates stable ozone concentrations that, in turn, are measured by the calibrated photometer (**5.2.1**). The ozone generator shall be capable of producing steady ozone concentrations in the range of measurement, at the required flow rate, and throughout the period of calibration. If a variable ozone generator is not available, the calibration system shall include a means of suitably diluting the ozone with additional zero air (see 4.4). In such a case, a mixing chamber shall be installed before the output manifold.

WARNING — Ozone is a toxic gas with a threshold limit value in air of 0,1 ml/m³, and any excess should be vented into an activated charcoal scrubber or outdoors (well away from any sampling intake).

5.2.3 *Airflow controllers*, capable of maintaining steady airflows throughout the period of calibration.

5.2.4 *Airflow meters,* of any type that is suitable for measuring the required airflows.

NOTE 6 The actual airflows are not used in the calculations but are used only for achieving the nominal concentrations required in the calibration procedure.

5.2.5 *Air pump*, used to draw the required sample flow through the absorption cell.

5.2.6 *Output manifold*, made of materials inert to ozone, such as glass or fluorocarbon polymer. It shall be of sufficient diameter and be vented to ensure equal atmospheric pressure inside and outside the manifold. The vent shall be located so as to prevent intrusion of ambient air.

5.2.7 *Four-ports two-way valve,* with interior surfaces made of a material inert to ozone, such as a fluorocarbon polymer.

When a calibration system such as that shown in Figure 2 is used, a four-ports two-way valve or some equivalent system of valves shall be used for switching the manifold flow between zero air and the ozone test atmosphere.

5.2.8 *Temperature indicator,* capable of measuring temperature with an accuracy of 0,1 °C.

5.2.9 *Pressure indicator,* capable of pressure with an accuracy of \pm 0,1 kPa.

6 Procedure

6.1 Operation of chemiluminescence analyser

Install the instrument in a suitable location. Follow the manufacturer's operating instructions for the specific analyser in use to set the various parameters, including sample and ethylene flow rates. Check to ensure that the manufacturer's performance characteristics are met or exceeded. If necessary, the location shall also be temperature controlled, so as to minimize the effect of the temperature dependence of the instrument. (See Annex A for typical performance specifications.) Introduce the air sample into the instrument and record the ozone concentration by means of a suitable recording device (for example, chart recorder, electronic data acquisition system, etc.).

NOTE 7 During continuous operation of the instrument, it is recommended that a multipoint calibration be carried out every 3 months. In addition, frequent operational checks on the instrument zero and span should be made, usually once a week.

6.2 Calibration of the chemiluminescence analyser

6.2.1 Principle

A schematic diagram of an ultraviolet photometric calibration system is shown in Figure 2. Various ozone concentrations (in air) are generated and accurately measured with a primary calibration ultraviolet photometer. These ozone calibration atmospheres are simultaneously sampled by the chemiluminescence analyser via a common manifold. The analyser responses are plotted against the ozone concentrations measured by the ultraviolet photometer. Alternatively, a calibration method using a transfer standard can be calibrated against the ultraviolet photometer and used to calibrate the chemiluminescence analyser at the sampling location.

NOTE 8 See [2] in Annex B for details on the principles of operation of the ultraviolet photometer.

6.2.2 Calibration procedure using the primary UV standard

During the calibration procedure, the chemiluminescence ozone analyser shall be operated at its correct flow rate and temperature. The calibration includes measurements using zero air (see 4.4) and at least four ozone concentrations (using the ozone generator described in 5.2.2) which shall be reasonably spaced to cover the range being measured. For all measurements, the input flow to the manifold shall exceed, by at least 10 %, the total flow required by the instruments attached to this manifold, with the excess appropriately vented at atmospheric pressure.

Carry out the following steps in the detailed calibration procedure.

— Assemble the apparatus as shown in Figure 2.

— Introduce zero air into the manifold. Set the zero control of the ozone analyser being calibrated to indicate a reading of zero, and set the transmittance of the photometer at 100 %.

— Adjust the output of the ozone generator to generate the most concentrated ozone atmosphere required.

— Turn the valve to introduce the ozone atmosphere into the manifold.

— Note the transmittance on the photometer at 254 nm, and also the temperature and pressure in the photometric cell.

— Set the span on the ozone analyser being calibrated to the ozone concentration calculated using equation (1) (see **7.1**).

— Generate and measure at least three other ozone concentrations over the scale range of the ozone analyser, by adjusting the ozone generator intensity

— For each ozone concentration generated, record the ozone concentration and the corresponding analyser response.

— Plot the ozone analyser responses versus the corresponding ozone concentrations at standard conditions, and draw the ozone analyser calibration curve or calculate the appropriate response factor.

NOTE 9 Repeating this calibration to estimate the uncertainty in the calibration is optional.

NOTE 10 A small fraction of the ozone may be lost upon contact with the photometer cell walls and other internal surfaces. Therefore, for maximum accuracy, such loss of ozone should be quantitatively determined and used to correct the output concentration. (See [2] in Annex B.)

6.2.3 Calibration procedure for the transfer standard

Consider using a transfer standard whenever the primary calibration ultraviolet photometer is not readily available, for example at the site of the chemiluminescence analyser. Whenever such a procedure is used, follow the calibration procedure of **6.2.2** using the transfer standard instead of the primary UV-photometer standard.

The transfer standard shall meet the following requirements:

— its accuracy shall be established against the primary UV-photometric calibration method and this accuracy shall be maintained within ± 5 % between successive primary calibrations;

— traceability to the primary UV-photometric standard shall be established at least once per year.

NOTE 11 The recommended calibration method for the (portable) transfer standard is a second UV photometer system with its own zero air and ozone supply. Two other acceptable calibration methods for transfer standards, although less convenient than the UV-photometric method, are gas-phase titration of excess nitric oxide by ozone (or vice versa) and the laboratory-based neutral buffered potassium iodidepotassium bromide (KIBR) method (for example, see [3] and [4] in Annex B). NOTE 12 There are other laboratory-based calibration methods for transfer standards that are less convenient or possibly less accurate (for example, see [5] in Annex B).

These include

— the neutral buffered potassium iodide-potassium bromide-thiosulfate (KIBRT) method;

— the boric acid buffered potassium iodide (BAKI) method;

— a stable ozone source with variable output.

7 Expression of results

7.1 Calibration ozone concentration

Calculate the mass concentration of ozone, $\rho(O_3)$, in micrograms per cubic metre, in the manifold at the reference conditions (25 °C and 101,3 kPa) using the following equation:

$$\rho(O_3) = \frac{-101, 3 \times T \times \ln(I/I_0)}{298 \times 1,44 \times 10^{-5} \times b \times P} \qquad \dots (1)$$

where

b	is the optical path length, in metres;
I/I _o	is the transmittance of the ozone sample;
р	is the pressure in the photometer ^a cell, in kilopascals;
T	is the temperature of the photometer cell, in kelvins;
$1,44 \times 10^{-5}$	is the absorption coefficient of ozone, in square metres per microgram.

^a See national foreword for details of textual error.

7.2 Sample ozone concentration

Convert the chemiluminescence analyser readings to the mass concentrations of ozone by using the appropriate calibration curve. Report the results as micrograms per cubic metre (μ g/m³) at 25 °C and 101,3 kPa, or as parts per million by volume [ppm(*V*/*V*)]. For ozone, 1 ppm(*V*/*V*) is equivalent to 1 960 μ g/m³ at 25 °C and 101,3 kPa.

7.3 Precision

The overall precision at 95 % probability for the generation and UV-photometric measurement of ozone calibration atmospheres shall be better than 5 %; the same overall precision shall apply for the transfer standard calibration method.

NOTE 13 Studies have shown that the precision in UV-photometric ozone calibrations can be within ± 1 % if care is taken when operating the system. In combination with the chemiluminescence method and owing to variability in laboratory techniques, it is expected that the overall precision of the ozone analysis of ambient air will be within $\pm 3,5$ %. (See [5] in Annex B.)

7.4 Accuracy

The accuracy of the method is estimated to be better than \pm 10 % of the measured concentration.

NOTE 14 The accuracy of the chemiluminescence method will be dependent on the photometer method to which it is referenced. The accuracy of the UV-photometer reference will be limited by the accuracy of the coefficient of absorption (\pm 1,5 %) and the measurements of the transmittance, pressure, temperature, ozone losses, etc. When a transfer standard is used, additional inaccuracies (inherent in the type of transfer standard) will be introduced.

8 Test report

The test report shall contain the following information:

a) a reference to this International Standard;

b) complete identification of the sample;

c) the results;

d) any unusual features noted during the determination.

Annex A (informative) Typical performance characteristics and specifications for the chemiluminescence ozone analyser

The specifications presented below are for general information only and are not to be interpreted as being applicable to any particular instrument (see [6] in Annex B for definitions):

- fall time: 10 s;
- rise time: 10 s;
- lag time: 3 s;
- lower detection limit: $2 \,\mu g/m^3$;
- output: 0 to 100 mV full scale;
- range: 0 to 10 mg/m³;
- repeatability: 4 %;
- sample flow rate: 0,5 l/min;
- span instability: 5 % per week, < 3 % in 24 h on 200 $\mu g/m^3$ range;
- period of unattended operation: 7 d;
- zero instability: same as span instability;
- operating temperature range: 10 °C to 40 °C;
- warm-up time: 2 h.

Annex B (informative) Bibliography

[1] Methods of Air Sampling and Analysis, 2nd Edition (1977), M. Katz, editor, American Public Health Association, Washington, D.C., pp. 17–124.

[2] Technical Assistance Document for the Calibration of Ambient Ozone Monitors, Report EPA-600/4-79-057, September 1979, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA.

 [3] Transfer Standards for Calibration of Air Monitoring Analyzers for Ozone, Report EPA-600/4-79-056, September 1979, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA.

[4] Messen der Ozon- und Peroxid-Konzentration Manuelles photometrisches Verfahren Kaliumjodid-Methode (Basisverfahren), Verein Deutscher Ingenieure VDI 2468, Blatt 1, (1978).

[5] REHME, K.A., PUZAK, J.C., BEARD, M.E., SMITH, C.F. and PAUR, R.J. Evaluation of Ozone Calibration Procedures, Report EPA-600/S4-80-050, February 1981, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA.

[6] ISO 6879:1983, Air quality — Performance characteristics and related concepts for air quality measuring methods.

BSI — British Standards Institution

BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: 020 8996 9000. Fax: 020 8996 7400.

BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: 020 8996 9001. Fax: 020 8996 7001.

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre. Tel: 020 8996 7111. Fax: 020 8996 7048.

Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: 020 8996 7002. Fax: 020 8996 7001.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained.

If permission is granted, the terms may include royalty payments or a licensing agreement. Details and advice can be obtained from the Copyright Manager. Tel: 020 8996 7070.

BSI 389 Chiswick High Road London W4 4AL