

Designation: B 415 - 98 (Reapproved 2002)

Standard Specification for Hard-Drawn Aluminum-Clad Steel Wire¹

This standard is issued under the fixed designation B 415; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope

1.1 This specification covers four conductivities of bare, hard-drawn, round, aluminum-clad steel wire for general use for electrical purposes in sizes 0.2043 to 0.0808 in. incl (4 to 12 AWG) (Note 1). This specification does not apply to wires used as reinforcement in ACSR conductors. (See Specification B 502.)

Note 1—Wire ordered to this specification is not intended for redrawing. If wire is desired for this purpose, the manufacturer shall be consulted.

1.2 The values stated in inch-pound units are to be regarded as the standard. The metric equivalents of inch-pound units may be approximate.

2. Referenced Documents

- 2.1 The following documents of the issue in effect on the date of material purchase form a part of this Specification to the extent referenced herein.
 - 2.2 ASTM Standards:
 - B 193 Test Method for Resistivity of Electrical Conductor Materials²
 - B 502 Specification for Aluminum-Clad Steel Core Wire for Aluminum Conductors, Aluminum-Clad Steel Reinforced²

3. Ordering Information

- 3.1 Orders for material under this specification shall include the following information:
 - 3.1.1 Quantity and conductivity of each size,
 - 3.1.2 Wire size: diameter in inches (see 7.1 and Table 1),
- 3.1.3 Method of measuring elongation if other than 5.3 (optional),
 - 3.1.4 Special package marking if required (Section 16), and
 - 3.1.5 Package size (see 17.1), and
- 3.1.6 Place of inspection if other than place of manufacture (Section 14).

4. Material

4.1 The wire shall be composed of a steel core with a substantially uniform and continuous aluminum covering thoroughly bonded to it. The drawn wire shall have the properties and characteristics prescribed in this specification.

5. Tensile Properties

5.1 The wire shall conform to the tensile requirements prescribed in Table 1 (Note 2). In computing tensile strength, the actual diameter of the finished wire shall be used.

Note 2—The approximate properties of standard AWG sizes of hard-drawn aluminum-clad steel wire are shown in Table 2 for the information of the user of this specification.

- 5.2 Wire of a nominal diameter that exceeds a size listed in Table 1 shall conform to the tensile requirements of the next larger diameter.
- 5.3 Elongation shall be determined by an extensometer suitable for measuring elongation in 10 in. (250 mm) and equipped with a vernier reading to 0.01 in. (0.25 mm). It shall be attached to the test specimen at a tensile load of 10 % of the rated strength. The elongation shall be observed while applying a tension load to the specimen. The reading at the time of fracture shall be taken as the elongation of the specimen. The elongation thus determined shall be not less than 1.5 % in 10 in. Tests shall be disregarded in which the extensometer reading is less than 1.5 % and in which the fracture does not occur between the extensometer attachments and at least 1 in. (25.0 mm) from the two attachments. In this case another sample from the same reel or coil shall be tested.
- 5.4 When agreed upon by the manufacturer and the purchaser, the elongation may be determined by measurements made between the jaws of the testing machine. The zero length shall be the distance between the jaws when a load equal to 10 % of the specified tensile strength shall have been applied and the final length shall be the distance between the jaws at the time of rupture. The zero length shall be as near 60 in. (1.52 m) as practicable. The elongation thus determined shall be not less than 1.4 %. Tests in which the elongation is less than 1.4 % and in which the fracture occurs at or within 1 in. (25.4 mm) of the jaws shall be disregarded. In this case another sample from the same reel or coil shall be tested.

 $^{^{1}}$ This specification is under the jurisdiction of ASTM Committee B01 on Electrical Conductors and is the direct responsibility of Subcommittee B01.06 on Composite Conductors.

Current edition approved March 10, 1998. Published September 1998. Originally published as B415 – 64 T. Last previous edition B415 –92.

² Annual Book of ASTM Standards, Vol 02.03.

TABLE 1 Tensile Requirements

Nominal	Size, AWG	20 %		27 %		30 %		40 %	
Diameter, in.		psi	MPa	psi	MPa	psi	MPa	psi	MPa
0.2043	4	155 000	1070	125 000	862	102 000	703	80 000	552
0.1880		160 000	1100	129 000	889	106 000	731	84 000	579
0.1819	5	165 000	1140	133 000	917	110 000	758	88 000	607
0.1729		170 000	1170	137 000	945	114 000	786	92 000	634
0.1620	6	175 000	1210	141 000	972	114 000	786	96 000	662
0.1549		180 000	1240	145 000	1000	118 000	814	96 000	662
0.1443	7	185 000	1280	150 000	1034	122 000	841	98 000	676
0.1369		190 000	1310	154 000	1062	126 000	869	98 000	676
0.1285	8	195 000	1340	156 000	1076	128 000	883	99 500	686
0.1144	9	195 000	1340	156 000	1076	128 000	883	99 500	686
0.1019	10	195 000	1340	156 000	1076	128 000	883	99 500	686
0.0907	11	195 000	1340	156 000	1076	128 000	883	99 500	686
0.0808	12	195 000	1340	156 000	1076	128 000	883	99 500	686

TABLE 2 Physical Constants

% Conductivity	Density at 20°C	Modulus of Elasticity psi	Coef. of Linear Exp.	Temperature Coef. of Resistance
20.3	0.2381 lb/in ³ (6.590 g/cm ³)	23.5×10^6 (162 GPa)	0.0000072/°F (0.0000126/ °C)	0.0020/°F (0.0036/°C)
27	0.2135 lb/in ³ (5.91 g/cm ³)	20.3×10^6 (140 GPa)	0.0000077/°F (0.0000134/ °C)	0.0020/°F (0.0036/°C)
30	0.2027 lb/in ³ (5.61 g/cm ³)	19.1×10^6 (132 GPa)	0.0000079/°F (0.0000138/ °C)	0.0021/°F (0.0038/°C)
40	0.1676 lb/in ³ (4.64 g/cm ³)	15.8 × 10 ⁶ (109 GPa)	0.0000089/°F (0.0000155/ °C)	0.0022/°F (0.0040/°C)

6. Resistance

6.1 The electrical resistance of the wire (Note 2 and Note 3) shall be determined by resistance measurements and maximum resistance shall be based on the nominal diameter of the wire and the resistivity value of:

51.01 Ω -cmil/ft at 20°C for 20.3 % Conductivity 38.41 Ω -cmil/ft at 20°C for 27 % Conductivity

34.57 Ω cmil/ft at 20°C for 30 % Conductivity 25.93 Ω cmil/ft at 20°C for 40 % Conductivity

Note 3—Electrical resistance is calculated by the following equation:

Resistance, $\Omega/\text{ft} = \text{Resistivity } (\Omega \cdot \text{cmil/ft})/$ (nominal diameter, mils)²

- 6.2 When resistance measurements are made at temperatures other than 20°C, corrections shall be based on the corresponding temperature coefficient of resistance shown in Table 2.
- 6.3 The electrical resistivity of the material shall be determined in accordance with Test Method B 193.

7. Dimensions and Permissible Variations

- 7.1 The size shall be expressed by the wire diameter in decimal fractions of an inch to the nearest 0.0001 in. (0.0025 mm), that is, in tenths of mils.
- 7.2 Within the range of diameters included in Table 3, the wire shall not vary from the specified diameter by more than the amounts shown in this table. In computing permissible variations, diameters shall be rounded to the nearest 0.0001 in. (0.0025 mm).

TABLE 3 Wire Diameter Variations

Specified Diameter, in.	Permissible Variations in Specified Diameter, plus and minus
0.2043 to 0.1000, incl	1.5 %
0.1000 to 0.0800, incl	0.0015 in. (1.5 mils) (0.038 mm)

7.3 If accessible, one diameter measurement shall be taken near each end and one near the middle of the coil or reel. In the case of reels, the center and one end may not be accessible and the prescribed diameter measurement shall be taken along the length of the accessible material. If any of the selected coils or reels fail to conform to the requirements for diameter as prescribed in 7.2, all coils or reels shall be measured in the manner specified.

8. Thickness of Aluminum

8.1 The aluminum thickness at any point shall be not less than stated in Table 4. Measurements shall be read to the closest 0.001 in. (0.025 mm). In determining the required or measured thickness, 0.0005 in. (0.013 mm) or less shall be dropped. For greater than 0.0005 in., the next larger 0.001 in., shall be used. Measurements shall be made by (a) using suitable electrical indicating instruments operating on the permeameter principle, or (b) direct measurement. For referee purposes, direct measurement shall be used to determine aluminum thickness on specimens taken from the ends of the coils.

9. Twist Test

9.1 The wire shall withstand without fracture not less than 20 twists in a length equivalent to 100 times the nominal diameter of the wire. In this test the specimen shall be gripped at its ends in vises, one of which shall be free to move longitudinally during the test. A small tensile load of approximately 15 lb (67 N) shall be applied to the specimen during

TABLE 4 Aluminum Thickness

% Conductivity	% of Nominal Wire Radius
20.3	10 % min.
27	14 % min.
30	15 % min.
40	25 % min.

testing. The specimen shall be twisted by rotating one of the vises at a rate of approximately 15 twists per minute in the same direction until fracture occurs. The number of twists shall be indicated by a counter or other suitable device.

9.2 Specimens after twisting to destruction shall not reveal any seams, pits, slivers, or surface imperfections of sufficient magnitude to indicate inherent defects or imperfections in the wire. Examination of the wire at the break shall show no separation of the aluminum from the steel.

10. Density

10.1 For the purpose of calculating mass per unit length, cross sections, etc., the density of the wire shall be taken as stated in Table 2. Other constants are given in Table 2 and Table 5.

Note 4—The value of the density of aluminum-clad steel wire is an average value which has been found in accordance with usual values encountered in practice.

11. Joints

11.1 The finished wire shall contain no joints or splices.

Note 5—Mechanical joints made during inspection at the request of the purchaser are permissible if agreed upon at the time of placing the order.

12. Finish

12.1 The surface of the wire shall be smooth and free of imperfections not consistent with good commercial practice.

13. Number of Tests

13.1 Unless otherwise agreed upon between the manufacturer and the purchaser at the time of purchase, one test specimen shall be taken from each lot of 10 coils of finished wire, and tested to determine compliance with Sections 5 through 9 before splitting into individual coils.

14. Inspection

14.1 Unless otherwise specified in the contract or purchase

TABLE 5 Approximate Properties of Hard-Drawn 20.3 % Conductivity Aluminum-Clad Steel Wire (for Information Only)

Nominal	Size,	Breaking Strength, min,		Mass per Unit Length		Resistance	Nominal Cross Section	
Diameter, in.	AWG	lb	kn	lb/1000 ft	lb/mile	 at 20°C, – max, Ω/1000 ft 	cmils	in. ²
0.2043	4	5 081	22.6	93.63	494.3	1.222	41 740	0.03278
0.1819	5	4 290	18.1	74.25	392.0	1.541	33 090	0.02599
0.1620	6	3 608	16.0	58.88	310.9	1.943	26 240	0.02061
0.1443	7	3 025	13.5	46.69	246.6	2.450	20 820	0.01635
0.1285	8	2 529	11.2	37.03	195.6	3.089	16 510	0.01297
0.1144	9	2 005	8.92	29.37	155.1	3.896	13 090	0.01028
0.1019	10	1 590	7.07	23.29	123.0	4.912	10 380	0.00816
0.0907	11	1 261	5.61	18.47	97.52	6.194	8 230	0.00646
0.0808	12	1 000	4.45	14.65	77.33	7.811	6 530	0.00513
	Approxima	ate Properties of Ha	ard-Drawn 27 %	Conductivity Alumi	inum-Clad Stee	l Wire (for Information	n Only)	
0.2043	4	4 098	18.2	84.00	443.5	0.920	41 740	0.03278
0.1819	5	3 457	15.4	66.59	351.6	1.161	33 090	0.02599
0.1620	6	2 906	12.9	52.80	278.8	1.464	26 240	0.02061
0.1443	7	2 453	10.9	41.89	221.2	1.845	20 820	0.01635
0.1285	8	2 023	9.00	33.22	175.4	2.326	16 510	0.01297
0.1144	9	1 604	7.13	26.34	139.1	2.934	13 090	0.01028
0.1019	10	1 272	5.66	20.89	110.3	3.700	10 380	0.00816
0.0907	11	1 008	4.48	16.55	87.4	4.667	8 230	0.00646
0.0808	12	800	3.56	13.14	69.4	5.882	6 530	0.00513
	Approxima	ate Properties of Ha	ard-Drawn 30 %	Conductivity Alumi	inum-Clad Stee	l Wire (for Information	n Only)	
0.2043	4							
			110	70.72	424.0		44 740	0.02270
	4	3 344	14.9	79.73	421.0	0.828	41 740	0.03278
0.1819	5	2 859	12.7	63.21	333.7	1.045	33 090	0.02599
0.1620	5 6	2 859 2 350	12.7 10.5	63.21 50.13	333.7 264.7	1.045 1.317	33 090 26 240	0.02599 0.02061
0.1620 0.1443	5 6 7	2 859 2 350 1 995	12.7 10.5 8.87	63.21 50.13 39.77	333.7 264.7 210.0	1.045 1.317 1.660	33 090 26 240 20 820	0.02599 0.02061 0.01635
0.1620 0.1443 0.1285	5 6 7 8	2 859 2 350 1 995 1 660	12.7 10.5 8.87 7.38	63.21 50.13 39.77 31.55	333.7 264.7 210.0 166.6	1.045 1.317 1.660 2.094	33 090 26 240 20 820 16 510	0.02599 0.02061 0.01635 0.01297
0.1620 0.1443 0.1285 0.1144	5 6 7 8 9	2 859 2 350 1 995 1 660 1 316	12.7 10.5 8.87 7.38 5.85	63.21 50.13 39.77 31.55 25.00	333.7 264.7 210.0 166.6 132.0	1.045 1.317 1.660 2.094 2.642	33 090 26 240 20 820 16 510 13 090	0.02599 0.02061 0.01635 0.01297 0.01028
0.1620 0.1443 0.1285 0.1144 0.1019	5 6 7 8 9 10	2 859 2 350 1 995 1 660 1 316 1 044	12.7 10.5 8.87 7.38 5.85 4.47	63.21 50.13 39.77 31.55 25.00 19.84	333.7 264.7 210.0 166.6 132.0 104.8	1.045 1.317 1.660 2.094 2.642 3.329	33 090 26 240 20 820 16 510 13 090 10 380	0.02599 0.02061 0.01635 0.01297 0.01028 0.00816
0.1620 0.1443 0.1285 0.1144	5 6 7 8 9	2 859 2 350 1 995 1 660 1 316	12.7 10.5 8.87 7.38 5.85	63.21 50.13 39.77 31.55 25.00	333.7 264.7 210.0 166.6 132.0	1.045 1.317 1.660 2.094 2.642	33 090 26 240 20 820 16 510 13 090	0.02599 0.02061 0.01635 0.01297 0.01028 0.00816 0.00646
0.1620 0.1443 0.1285 0.1144 0.1019 0.0907	5 6 7 8 9 10 11	2 859 2 350 1 995 1 660 1 316 1 044 827 657	12.7 10.5 8.87 7.38 5.85 4.47 3.68 2.92	63.21 50.13 39.77 31.55 25.00 19.84 15.71 12.48	333.7 264.7 210.0 166.6 132.0 104.8 82.9 65.9	1.045 1.317 1.660 2.094 2.642 3.329 4.203	33 090 26 240 20 820 16 510 13 090 10 380 8 230 6 530	0.03278 0.02599 0.02061 0.01635 0.01297 0.01028 0.00816 0.00646 0.00513
0.1620 0.1443 0.1285 0.1144 0.1019 0.0907 0.0808	5 6 7 8 9 10 11 12 Approxima	2 859 2 350 1 995 1 660 1 316 1 044 827 657	12.7 10.5 8.87 7.38 5.85 4.47 3.68 2.92	63.21 50.13 39.77 31.55 25.00 19.84 15.71 12.48	333.7 264.7 210.0 166.6 132.0 104.8 82.9 65.9	1.045 1.317 1.660 2.094 2.642 3.329 4.203 5.295	33 090 26 240 20 820 16 510 13 090 10 380 8 230 6 530	0.02599 0.02061 0.01635 0.01297 0.01028 0.00816 0.00646 0.00513
0.1620 0.1443 0.1285 0.1144 0.1019 0.0907 0.0808	5 6 7 8 9 10 11 12 Approxima	2 859 2 350 1 995 1 660 1 316 1 044 827 657 ate Properties of Ha	12.7 10.5 8.87 7.38 5.85 4.47 3.68 2.92	63.21 50.13 39.77 31.55 25.00 19.84 15.71 12.48 Conductivity Alumi	333.7 264.7 210.0 166.6 132.0 104.8 82.9 65.9	1.045 1.317 1.660 2.094 2.642 3.329 4.203 5.295	33 090 26 240 20 820 16 510 13 090 10 380 8 230 6 530 1 Only)	0.02599 0.02061 0.01635 0.01297 0.01026 0.00816 0.00646 0.00513
0.1620 0.1443 0.1285 0.1144 0.1019 0.0907 0.0808	5 6 7 8 9 10 11 12 Approxima	2 859 2 350 1 995 1 660 1 316 1 044 827 657 ate Properties of Ha	12.7 10.5 8.87 7.38 5.85 4.47 3.68 2.92 ard-Drawn 40 %	63.21 50.13 39.77 31.55 25.00 19.84 15.71 12.48 Conductivity Alumi	333.7 264.7 210.0 166.6 132.0 104.8 82.9 65.9 inum-Clad Steel	1.045 1.317 1.660 2.094 2.642 3.329 4.203 5.295 I Wire (for Information	33 090 26 240 20 820 16 510 13 090 10 380 8 230 6 530 10 Only)	0.02599 0.02061 0.01635 0.01297 0.01028 0.00816 0.00513
0.1620 0.1443 0.1285 0.1144 0.1019 0.0907 0.0808 0.2043 0.1819 0.1620	5 6 7 8 9 10 11 12 Approxima 4 5 6	2 859 2 350 1 995 1 660 1 316 1 044 827 657 ate Properties of Hamelon (1977) 2 622 2 287 1 979	12.7 10.5 8.87 7.38 5.85 4.47 3.68 2.92 ard-Drawn 40 %	63.21 50.13 39.77 31.55 25.00 19.84 15.71 12.48 Conductivity Alumi	333.7 264.7 210.0 166.6 132.0 104.8 82.9 65.9 inum-Clad Steel	1.045 1.317 1.660 2.094 2.642 3.329 4.203 5.295 I Wire (for Information	33 090 26 240 20 820 16 510 13 090 10 380 8 230 6 530 1 Only) 41 740 33 090 26 240	0.02599 0.02061 0.01633 0.01297 0.01028 0.00816 0.00513
0.1620 0.1443 0.1285 0.1144 0.1019 0.0907 0.0808 0.2043 0.1819 0.1620 0.1443	5 6 7 8 9 10 11 12 Approxima 4 5 6 7	2 859 2 350 1 995 1 660 1 316 1 044 827 657 ate Properties of Hailer 2 622 2 287 1 979 1 602	12.7 10.5 8.87 7.38 5.85 4.47 3.68 2.92 ard-Drawn 40 %	63.21 50.13 39.77 31.55 25.00 19.84 15.71 12.48 Conductivity Alumi 65.93 52.27 41.44 32.88	333.7 264.7 210.0 166.6 132.0 104.8 82.9 65.9 inum-Clad Stee 348.1 276.0 218.8 173.6	1.045 1.317 1.660 2.094 2.642 3.329 4.203 5.295 I Wire (for Information 0.621 0.784 0.988 1.245	33 090 26 240 20 820 16 510 13 090 10 380 8 230 6 530 10 Only) 41 740 33 090 26 240 20 820	0.02599 0.02061 0.01633 0.01297 0.01028 0.00816 0.00513 0.03278 0.02599 0.02061 0.01635
0.1620 0.1443 0.1285 0.1144 0.1019 0.0907 0.0808 0.2043 0.1819 0.1620 0.1443 0.1285	5 6 7 8 9 10 11 12 Approxima 4 5 6 7 8	2 859 2 350 1 995 1 660 1 316 1 044 827 657 ate Properties of Hailer 2 622 2 287 1 979 1 602 1 290	12.7 10.5 8.87 7.38 5.85 4.47 3.68 2.92 ard-Drawn 40 % 11.7 10.2 8.80 7.13 5.74	63.21 50.13 39.77 31.55 25.00 19.84 15.71 12.48 Conductivity Alumi 65.93 52.27 41.44 32.88 26.08	333.7 264.7 210.0 166.6 132.0 104.8 82.9 65.9 sinum-Clad Steel 348.1 276.0 218.8 173.6 137.7	1.045 1.317 1.660 2.094 2.642 3.329 4.203 5.295 I Wire (for Information 0.621 0.784 0.988 1.245 1.571	33 090 26 240 20 820 16 510 13 090 10 380 8 230 6 530 10 Only) 41 740 33 090 26 240 20 820 16 510	0.02599 0.02061 0.01638 0.01297 0.01028 0.00816 0.00513 0.03278 0.02599 0.02061 0.01638 0.01297
0.1620 0.1443 0.1285 0.1144 0.1019 0.0907 0.0808 0.2043 0.1819 0.1620 0.1443 0.1285 0.1144	5 6 7 8 9 10 11 12 Approxima 4 5 6 7 8 9	2 859 2 350 1 995 1 660 1 316 1 044 827 657 ate Properties of Hailer Pr	12.7 10.5 8.87 7.38 5.85 4.47 3.68 2.92 ard-Drawn 40 % 11.7 10.2 8.80 7.13 5.74 4.55	63.21 50.13 39.77 31.55 25.00 19.84 15.71 12.48 Conductivity Alumi 65.93 52.27 41.44 32.88 26.08 20.68	333.7 264.7 210.0 166.6 132.0 104.8 82.9 65.9 inum-Clad Steel 348.1 276.0 218.8 173.6 137.7 109.2	1.045 1.317 1.660 2.094 2.642 3.329 4.203 5.295 I Wire (for Information 0.621 0.784 0.988 1.245 1.571 1.981	33 090 26 240 20 820 16 510 13 090 10 380 8 230 6 530 11 Only) 41 740 33 090 26 240 20 820 16 510 13 090	0.02599 0.02061 0.01635 0.01297 0.01028 0.00816 0.00513 0.03278 0.02599 0.02061 0.01638 0.01297 0.01028
0.1620 0.1443 0.1285 0.1144 0.1019 0.0907 0.0808 0.2043 0.1819 0.1620 0.1443 0.1285	5 6 7 8 9 10 11 12 Approxima 4 5 6 7 8	2 859 2 350 1 995 1 660 1 316 1 044 827 657 ate Properties of Hailer 2 622 2 287 1 979 1 602 1 290	12.7 10.5 8.87 7.38 5.85 4.47 3.68 2.92 ard-Drawn 40 % 11.7 10.2 8.80 7.13 5.74	63.21 50.13 39.77 31.55 25.00 19.84 15.71 12.48 Conductivity Alumi 65.93 52.27 41.44 32.88 26.08	333.7 264.7 210.0 166.6 132.0 104.8 82.9 65.9 sinum-Clad Steel 348.1 276.0 218.8 173.6 137.7	1.045 1.317 1.660 2.094 2.642 3.329 4.203 5.295 I Wire (for Information 0.621 0.784 0.988 1.245 1.571	33 090 26 240 20 820 16 510 13 090 10 380 8 230 6 530 10 Only) 41 740 33 090 26 240 20 820 16 510	0.02599 0.02061 0.01635 0.01297 0.01028 0.00816 0.00646

order, the manufacturer shall be responsible for the performance of all inspection and test requirements specified.

- 14.2 All inspections and tests shall be made at the place of manufacture unless otherwise especially agreed to between the manufacturer and the purchaser at the time of the purchase.
- 14.3 The manufacturer shall afford the inspector representing the purchaser all reasonable manufacturer's facilities to satisfy him that the material is being furnished in accordance with this specification.

15. Rejection

15.1 If the wire fails in the first test to meet any requirements of this specification, two additional tests for these requirements shall be made on samples of wire from the same coil or reel. If failure occurs in either of these tests, the lot of wire shall be rejected. However, the lot may be resubmitted for inspection by testing every coil or reel for the requirement which caused the specimen to fail and rejecting the defective coils or reels.

16. Product Marking

16.1 A weather-resistant tag shall be attached to the outside of each coil or reel showing the manufacturer's name or trademark with the net mass and size of wire. If additional information is required on the tags, this shall be arranged with the manufacturer at the time of purchase. Each coil shall also have a tag inside the wrapping showing the manufacturer's name, net mass, and size of wire.

17. Packaging and Shipping

- 17.1 Package sizes shall be agreed upon by the manufacturer and the purchaser in the placing of individual purchase orders.
- 17.2 The wire shall be protected against damage in ordinary handling and shipping.

18. Keywords

18.1 aluminum-clad; aluminum-clad steel wire; steel wire

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).