CONFIRMED DECEMBER 2007

Schedule for

Density-composition tables for aqueous solutions of hydrochloric acid

UDC 531.756(083.4/.6):[546.131:54 - 145.2]

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

Committees responsible for this British Standard

The preparation of this British Standard was entrusted by the Laboratory Apparatus Standards Committee (LBC/-) to Technical Committee LBC/5, upon which the following bodies were represented:

British Laboratory Ware Association

Department of Trade and Industry (Laboratory of the Government Chemist) Department of Trade and Industry (National Weights and Measures Laboratory)

Institute of Brewing

Institute of Petroleum

National Sulphuric Acid Association

Royal Society of Chemistry

Scientific Glassware Association

Scotch Whisky Association

Society of Glass Technology

This British Standard, having been prepared under the direction of the Laboratory Apparatus Standards Committee, was published under the authority of the Board of BSI and comes into effect on 31 December 1987

© BSI 11-1999

First published August 1941 First revision August 1957 Second revision December 1987

The following BSI references relate to the work on this standard: Committee reference LBC/5 Draft for comment 86/50538 D

Amendments issued since publication

7	Amd. No.	Date of issue	Comments
С			

ISBN 0 580 16216 8

Contents

	Page
Committees responsible	$Inside \ front \ cover$
Foreword	ii
1 Scope	1
2 Basis of Table 1	1
3 Application of Table 1	1
Appendix A Correction of readings taken on BS hydrometers	18
Appendix B BS hydrometers available for use in conjunction v	with
the tables	21
Appendix C Examples of the use of Table 1 in conjunction wit	h
BS hydrometers	23
Table 1 — Density-composition table for aqueous solutions of	
hydrochloric acid	2
Table 2 — Corrections to be applied to obtain density at t	18
Table 3 — Temperature corrections for BS hydrometers	18
Table 4 — Surface tensions of aqueous solutions of	
hydrochloric acid at 20 $^{\circ}\mathrm{C}$	19
Table 5 — Maximum errors introduced by ignoring surface	
tension when reading BS hydrometers, adjusted for 55 mN/m	
in aqueous solutions of hydrochloric acid in an ordinary hydro	ometer jar 19
Table 6 — Maximum errors due to omission of all corrections	to
BS hydrometers adjusted for 55 mN/m	20
Table 7 — BS hydrometers available for use in aqueous solution	ons
of hydrochloric acid	22
Publications referred to	Inside back cover

Foreword

This British Standard has been prepared under the direction of the Laboratory Apparatus Standards Committee.

This British Standard was first published in 1941 and was revised in 1957. This revision supersedes the 1957 edition which is withdrawn.

The United Kingdom participated in the preparation by Technical Committee TC 47, Chemistry, of the International Organization for Standardization (ISO), of the related ISO Recommendation ISO/R 905:1968, but disapproved it on technical grounds. The United Kingdom did not disapprove of the conversion of ISO/R 905:1968 into ISO 905:1976 "Hydrochloric acid for industrial use — Evaluation of hydrochloric acid concentration by measurement of density".

Together with hydrometers the tables provide a simple means of determining the strength of any given aqueous solution of hydrochloric acid, or making up solutions of known strength. The tables may, or course, be used with other methods of determining density (for example, see BS 733).

The previous edition of this British Standard made reference to density and specific gravity hydrometers complying with BS 718:1953. When BS 718 was revised in 1979 it was aligned as far as possible with the intentions of Technical Committee 48, Laboratory glassware and related apparatus, of the International Organization for Standardization (ISO). The term "specific gravity" was replaced by "relative density", scales of relative density were excluded, and scales marked in kilograms per cubic metre were introduced as an alternative to grams per millilitre. Users who had a continuing need for relative density hydrometers (d 60/60 °F) were referred to ISO 650.

The readings of a 60/60 °F relative density hydrometer can readily be corrected (see Appendix A) to yield density (in kg/m³) of the liquid at the temperature at which the hydrometer is used.

Within 1 to 2 parts in 1 000 readings at a temperature t (in °C) of a 60/60 °F relative density hydrometer can be taken as the density (in kg/m³) at t. To an accuracy which is very frequently adequate (within 1 part in 1 000) the reading at a temperature t between 10 °C and 40 °C on a 20 °C or 15 °C density hydrometer complying with BS 718 may be accepted as the density (in kg/m³) of the liquid at t. Density and relative density hydrometers therefore may often be used without correction. Appendix A gives information on how the highest accuracy can be obtained. Recommendations as to the choice of suitable hydrometers for use in conjunction with these tables are given in Appendix B. Appendix C gives examples of the use of density-composition tables in conjunction with these hydrometers.

The principal differences between BS 976:1957 and this edition are:

a) density, in Table 1, is given in kilograms per cubic metre instead of grams per millilitre;

b) SI units have been used throughout and, where applicable, the tables have been recomputed;

c) recommendations as to the choice of suitable hydrometers for use in conjunction with Table 1 have been revised to accord with BS 718;

d) the temperature calculations given in Table 3 have been computed using the value of the thermal cubical expansion coefficient quoted in ISO 1768 for the use in preparation of measurement tables for liquids.

A British Standard does not purport to include all the necessary provisions of a contract. Users of British Standards are responsible for their correct application.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

Summary of pages

This document comprises a front cover, an inside front cover, pages i to iv, pages 1 to 24, an inside back cover and a back cover.

This standard has been updated (see copyright date) and may have had amendments incorporated. This will be indicated in the amendment table on the inside front cover.

1 Scope

This British Standard gives tables that enable the composition of an aqueous solution of hydrochloric acid to be determined from its density at temperatures between 0 $^{\circ}$ C and 40 $^{\circ}$ C.

Appendix A gives information on the corrections that are necessary when density is determined by a hydrometer complying with BS 718^{1} .

Appendix B gives information on the choice of BS hydrometers that are suitable for the determination of the density of hydrochloric acid solutions.

Appendix C gives examples of the use of a BS hydrometer in conjunction with Table 1. NOTE The titles of the publications referred to in this standard are listed on inside back cover.

2 Basis of Table 1

Table 1 is based on data obtained from the International Critical Tables (1928) Vol. III, page 54, supplemented by density-composition determinations in solutions containing more than 30 % of hydrochloric acid by mass at 10 °C, 20 °C and 30 °C, which were carried out at the suggestion of the Technical Committee responsible for this standard. The results of the latter determinations support the data which appear in the International Critical Tables, though at a given density the concentrations given in certain other data, published since the International Critical Tables were compiled, are appreciably greater. In particular the percentages given by Akerlöf and Teare²⁾ are about 0.5 greater at about 1.15 g/mL (i.e. about 30 % HCl).

It should be observed that the table relates to mass, not to apparent mass in air.

3 Application of Table 1

Table 1 is arranged primarily for ease in determining the strength of an aqueous solution of hydrochloric acid of known density. The density of a solution of known strength can, however, be obtained quite readily from the table. Moreover, by the application of small allowances (see Appendix A) Table 1 can be used to find the strength of solutions of known relative density or

the relative density of solutions of known strength.

Consider, for example, a solution containing 10 g of HCl in 100 g of solution, i.e. one for which g = 10. By looking up the value of D_t corresponding to the value g = 10 under any particular temperature in Table 1, the density of the solution at that temperature can be obtained. Thus, for example, the density of the solution of 1 050 kg/m³ at 10 °C, 1 047 kg/m³ at 20 °C, etc. Due allowance, based on the density of water at the various temperatures concerned, can then be made to find the corresponding relative densities at the same temperature as the acid.

It should be observed that the percentage composition g of a solution is independent of its temperature, but G, the number of grams of hydrochloric acid in 1 L of solution, varies with the temperature of the solution owing to the change in volume of the solution with change in temperature. Hence, the concentration G should always be associated with a particular temperature. For a given value of G applicable at a particular temperature, Table 1 can be used to obtain the density of the solution at the specified temperature or at any other temperature within the range of the table. The value of *G* for the solution at temperatures other than the specified one can also be obtained. For example, consider a solution 1 L of which, at 20 °C, contains 199 g of HCl. Under 20 °C in Table 1 the value of D_t corresponding to G = 199is 1 089 kg/m³ and the corresponding value of gis 18.2 g. By tracing the value g = 18.2 g through the table, and interpolating where necessary, the density D_t at various temperatures of the solution containing 199 g of HCl in 1 L of solution at 20 °C can be obtained and also the number of grams of HCl in 1 L of the solution at various temperatures.

The following are examples of values which may thus be obtained.

t	HCl in 100 g of solution	Density of solution at t	HCl in 1 L of solution at t
°C	g	kg/m ³	g
0	18.2	$1\ 097$	200
10	18.2	1 093	199
20	18.2	1 089	199
30	18.2	1 084	198
40	18.2	1 080	197

¹⁾ From hereon referred to as a BS hydrometer.

²⁾ J. Amer. Chem. Soc., **60** (1938), 1226.

purposes it can be assumed that irrespective of the value of *t* the reading of a BS density hydrometer at t gives the density D_t , and that the reading of a 60/60 °F relative density hydrometer at t is numerically 0.001 greater than $D_{t/1 000}$ (see Appendix A)]. 5 °C t 0°C 10 °C 15 °C D_t GGGGg g g g 1 000 0.0 0 0.0 0 0.11 0.2 $\mathbf{2}$ 0.41 001 $\mathbf{2}$ $\mathbf{2}$ 0.20.20.33 4 1 002 0.44 0.44 0.5 $\mathbf{5}$ 0.6 6 0.66 0.7 $\overline{7}$ 0.81 003 6 0.68 1 004 0.8 8 0.88 0.8 8 1.010 1 005 10 10 10 1.2121.01.01.01.1 121.2121.2121.4 1 006 141 007 1.3131.4141.414 1.6161 008 1.5151.5161.6161.8181 0 0 9 1.7171.718 1.8 18 2.0202.0202.2221 0 1 0 1.9191.9192.42.1212.1212.222241 011 2.32.62.3232324261 012 2.41 013 2.5252.5252.6262.8281 014 2.6272.7272.8283.0 30 1 015 2.8292.9293.0 30 3.2321 0 1 6 3.0 31 3.131 3.2323.4341 0 1 7 3.233 3.3 33 3.4343.6 36 341018 3.43.435 3.6 36 3.8 38 1 0 1 9 3.6 36 3.6 37 3.8 38 4.040 3839 4.2421 0 2 0 3.83.84.0404.21 0 2 1 3.9 40 4.041 424.444 1 0 2 2 4.1424.2434.4454.6471 0 2 3 4.344 4.4454.6474.84946 475.01 0 2 4 4.54.64.8 49511 0 2 5 4.7484.8495.0515.2535.21 0 2 6 4.9505.051535.455

Table 1 — Density-composition table for aqueous solutions of hydrochloric acid

 D_t is the density (mass per unit volume) of solution (in kg/m³) at a temperature t (in °C) [for many

2	0 °C	2	5 °C	8	80 °C	:	35 °C	4	40 °C	t
g	G	g	G	g	G	g	G	g	G	D_t
0.3	3	0.6	6	0.9	9	1.2	12	1.6	16	1 000
0.5	5	0.8	8	1.1	11	1.4	14	1.8	18	1 001
0.8	8	1.0	10	1.3	13	1.6	16	2.0	20	1 002
1.0	10	1.2	12	1.5	15	1.8	18	2.2	22	1 003
1.2	12	1.4	14	1.7	17	2.1	21	2.4	24	1 004
1.4	14	1.6	16	1.9	19	2.3	23	2.6	26	1 005
1.6	16	1.8	18	2.1	21	2.5	25	2.8	29	1 006
1.8	18	2.0	20	2.3	23	2.7	27	3.1	31	1 007
2.0	20	2.2	22	2.5	25	2.9	29	3.3	33	1 008
2.2	22	2.4	24	2.7	28	3.1	31	3.5	35	1 009
2.4	24	2.6	27	2.9	30	3.3	33	3.7	37	1 010
2.6	26	2.8	29	3.1	32	3.5	35	3.9	39	1 011
2.8	28	3.0	31	3.3	34	3.7	38	4.1	41	1 012
3.0	30	3.2	33	3.6	36	3.9	40	4.3	43	1 013
3.2	32	3.4	35	3.8	38	4.1	42	4.5	46	1 014
3.4	34	3.6	37	4.0	40	4.3	44	4.7	48	1 015
3.6	36	3.9	39	4.2	42	4.5	46	4.9	50	1 016
3.8	38	4.1	41	4.4	45	4.8	48	5.1	52	1 017
4.0	40	4.3	43	4.6	47	5.0	51	5.4	54	1 018
4.2	43	4.5	46	4.8	49	5.2	53	5.6	57	1 019
4.4	45	4.7	48	5.0	51	5.4	55	5.8	59	1 0 2 0
4.6	47	4.9	50	5.2	53	5.6	57	6.0	61	1 021
4.8	49	5.1	52	5.4	55	5.8	59	6.2	63	1 0 2 2
5.0	51	5.3	54	5.6	58	6.0	61	6.4	66	1 023
5.2	53	5.5	56	5.8	60	6.2	64	6.6	68	1 024
5.4	55	5.7	58	6.0	62	6.4	66	6.8	70	1 0 2 5
5.6	58	5.9	61	6.3	64	6.6	68	7.0	72	1 0 2 6

g is the mass (in g) of HCl in 100 g mass of solution.

purposes i at <i>t</i> gives t	t can be ass the density	as per unit volumed that is D_i , and that eater than D	rrespective the reading	of the value g of a 60/60 °	of <i>t</i> the rea F relative of	ding of a BS	density hy	drometer	
t	0	°C	5	°C	10	°C	15 °C		
D_t	g	G	g	G	g	G	g	G	
1 027 1 028 1 029	5.1 5.3 5.5	52 54 56	5.2 5.4 5.6	53 55 57	$5.4 \\ 5.5 \\ 5.7$	55 57 59	$5.6 \\ 5.8 \\ 6.0$	57 59 61	
1 030 1 031 1 032	$5.6 \\ 5.8 \\ 6.0$	58 60 62	$5.8 \\ 6.0 \\ 6.2$	59 61 64	$5.9 \\ 6.1 \\ 6.3$	61 63 65	$ \begin{array}{r} 6.2 \\ 6.4 \\ 6.6 \end{array} $	63 66 68	
1 033 1 034 1 035	$ \begin{array}{r} 6.2 \\ 6.4 \\ 6.6 \end{array} $	64 66 68	$ \begin{array}{r} 6.4 \\ 6.6 \\ 6.8 \end{array} $	66 68 70	$6.5 \\ 6.7 \\ 6.9$	68 70 72	6.8 7.0 7.2	70 72 74	
1 036	6.8	70	7.0	72	$7.1 \\ 7.3 \\ 7.5$	74	7.4	77	
1 037	7.0	72	7.1	74		76	7.6	79	
1 038	7.2	74	7.3	76		78	7.8	81	
1 039	7.4	77	7.5	78	7.7	80	8.0	83	
1 040	7.6	79	7.7	80	7.9	83	8.2	85	
1 041	7.8	81	7.9	82	8.1	85	8.4	87	
1 042	7.9	83	8.1	85	8.3	87	8.6	90	
1 043	8.1	85	8.3	87	8.5	89	8.8	92	
1 044	8.3	87	8.5	89	8.7	91	9.0	94	
1 045	8.5	89	8.7	91	8.9	93	9.2	96	
1 046	8.7	91	8.9	93	9.1	95	9.4	98	
1 047	8.9	93	9.1	95	9.3	98	9.6	101	
1 048	9.1	95	9.3	97	9.5	100	9.8	103	
1 049	9.3	97	9.5	99	9.7	102	10.0	105	
1 050	9.5	99	9.7	102	9.9	104	10.2	107	
1 051	9.7	101	9.9	104	10.1	106	10.4	109	
1 052	9.8	104	10.1	106	10.3	108	10.6	112	
1 053	10.0	106	10.3	108	10.5	111	10.8	114	

Licensed copy: Lee Shau Kee Library, HKUST, Version correct as of 03/01/2015, (c) The British Standards Institution 2013

of the col										
2	0 °C	2	5 °C	ŧ	30 °C	÷	35 °C	4	40 °C	t
g	G	g	G	g	G	g	G	g	G	D_t
5.8	60	6.1	63	6.5	66	6.9	70	7.3	75	1 027
6.0	62	6.3	65	6.7	69	7.1	73	7.5	77	1 028
6.2	64	6.5	67	6.9	71	7.3	75	7.7	79	1 029
6.4	66	6.7	69	7.1	73	7.5	77	7.9	81	1 0 3 0
6.6	68	7.0	72	7.3	75	7.7	79	8.1	84	1 031
6.9	71	7.2	74	7.5	78	7.9	82	8.3	86	$1\ 032$
7.1	73	7.4	76	7.7	80	8.1	84	8.5	88	1 033
7.3	75	7.6	78	7.9	82	8.3	86	8.7	90	1 034
7.5	77	7.8	81	8.1	84	8.5	88	9.0	93	$1\ 035$
7.7	79	8.0	83	8.4	87	8.8	91	9.2	95	1 0 3 6
7.9	82	8.2	85	8.6	89	9.0	93	9.4	97	1 037
8.1	84	8.4	87	8.8	91	9.2	95	9.6	99	1 038
8.3	86	8.6	89	9.0	93	9.4	97	9.8	102	1 039
8.5	88	8.8	92	9.2	95	9.6	100	10.0	104	1 040
8.7	90	9.0	94	9.4	98	9.8	102	10.2	106	1 041
8.9	93	9.2	96	9.6	100	10.0	104	10.4	108	1 042
9.1	95	9.4	98	9.8	102	10.2	107	10.6	111	1 043
9.3	97	9.6	101	10.0	105	10.4	109	10.8	113	1 044
9.5	99	9.9	103	10.2	107	10.6	111	11.0	115	$1 \ 045$
9.7	102	10.1	105	10.4	109	10.8	113	11.2	118	1 046
9.9	104	10.3	107	10.6	111	11.0	116	11.4	120	1 047
10.1	106	10.5	110	10.8	114	11.2	118	11.7	122	1 048
10.3	108	10.7	112	11.0	116	11.5	120	11.9	124	1 049
10.5	111	10.9	114	11.2	118	11.7	122	12.1	127	$1\ 050$
10.7	113	11.1	116	11.5	120	11.9	125	12.3	129	1 051
10.9	115	11.3	119	11.7	123	12.1	127	12.5	131	$1\ 052$
11.1	117	11.5	121	11.9	125	12.3	129	12.7	134	$1\ 053$

g is the mass (in g) of HCl in 100 g mass of solution.

G is the mass (in g) of HCl in a quantity of solution occupying 1 L at the temperature stated at the head of the column.

purposes it can be assumed that irrespective of the value of t the reading of a BS density hydrometer at t gives the density D_a and that the reading of a 60/60 °F relative density hydrometer at t is numerically 0.001 greater than D_{g1000} (see Appendix A)]. t 0 °C 5 °C 10 °C 15 °C D_a g G g G g G D_1 g G g G g G D_1 g G g G g G D_1 D_2 108 10.4 110 10.7 113 11.0 116 1055 10.4 110 10.6 112 10.9 115 11.2 118 1056 10.6 112 10.8 114 11.1 117 11.4 120 1057 10.8 114 11.0 116 11.3 119 11.6 122 1059 11.2 118 11.4 121 11.7 124 12.0 127 1060 11.4 120 11.6 123 11.9 126 12.2 129 1061 11.5 123 11.8 125 12.1 128 12.4 131 1062 11.7 125 12.0 127			s per unit vo						
numerically 0.001 greater than D_{t1000} (see Appendix A)].t0 °C5 °C10 °C15 °C D_t gGgGgGg105410.210810.411010.711311.0116105510.411010.611210.911511.2118105610.611210.811411.111711.4120105710.811411.011611.311911.6122105811.011611.211911.512111.8122105911.211811.412111.712412.0127106011.412011.612311.912612.2129106111.512311.812512.112812.4131106311.912712.212912.413212.6134106412.112912.413212.613413.0138106512.313112.613413.0138144106612.513312.713613.013913.3142106612.513312.713613.013913.3142106612.713512.913.114013.414313.7147106913.114013.3142									rometer at
ι $0^{\circ}C$ $5^{\circ}C$ $10^{\circ}C$ $15^{\circ}C$ D_{i} gGgGgGgG105410.210810.411010.711311.0116105510.411010.611210.911511.2118105610.611210.811411.111711.4120105710.811411.011611.311911.6122105811.011611.211911.512111.8125105911.211811.412111.712412.0127106011.412011.612311.912612.2129106111.512311.812512.112812.4131106211.712512.012712.313012.6133106311.912712.212912.413212.613413.0138106412.112912.413212.613413.0138142106612.513312.713613.013913.3142106712.713512.913813.214113.5144106812.913713.114013.414313.7147106913.114013.314215514.5	-			-		relative den	sity hydrom	eter at t is	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	numerical					1		1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	t	0	°C	5	°C	10	°C	15	°C
1 055 10.4 110 10.6 112 10.9 115 11.2 118 1 056 10.6 112 10.8 114 11.1 117 11.4 120 1 057 10.8 114 11.0 116 11.3 119 11.6 122 1 058 11.0 116 11.2 119 11.5 121 11.8 125 1 059 11.2 118 11.4 121 11.7 124 12.0 127 1 060 11.4 120 11.6 123 11.9 126 12.2 129 1 061 11.5 123 11.8 125 12.1 128 12.4 131 1 062 11.7 125 12.0 127 12.3 130 12.6 133 1 063 11.9 127 12.2 129 12.4 132 12.8 136 1 065 12.3 131 12.6 134 12.8 137 13.2 140 1 066 12.5 133	D_t	g	G	g	G	g	G	g	G
1 055 10.4 110 10.6 112 10.9 115 11.2 118 1 056 10.6 112 10.8 114 11.1 117 11.4 120 1 057 10.8 114 11.0 116 11.3 119 11.6 122 1 058 11.0 116 11.2 119 11.5 121 11.8 125 1 059 11.2 118 11.4 121 11.7 124 12.0 127 1 060 11.4 120 11.6 123 11.9 126 12.2 129 1 061 11.7 125 12.0 127 12.3 130 12.6 133 1 062 11.7 125 12.0 127 12.3 130 12.6 133 1 063 11.9 127 12.2 129 12.4 132 12.8 136 1 065 12.3 131 12.6 134 13.0 138 142 1 066 12.5 133 12.7	1 054	10.2	108	10.4	110	10.7	113	11.0	116
1057 10.8 114 11.0 116 11.3 119 11.6 122 1058 11.0 116 11.2 119 11.5 121 11.8 125 1059 11.2 118 11.4 121 11.7 124 12.0 127 1060 11.4 120 11.6 123 11.9 126 12.2 129 1061 11.5 123 11.8 125 12.1 128 12.4 131 1062 11.7 125 12.0 127 12.3 130 12.6 133 1063 11.9 127 12.2 129 12.4 132 12.6 134 1064 12.1 129 12.4 132 12.6 134 13.0 138 1065 12.3 131 12.6 134 12.8 137 13.2 140 1066 12.5 133 12.7 136 13.0 139 13.3 142 1067 12.7 135 12.9 </th <th>$1\ 055$</th> <th>10.4</th> <th>110</th> <th>10.6</th> <th>112</th> <th>10.9</th> <th>115</th> <th>11.2</th> <th>118</th>	$1\ 055$	10.4	110	10.6	112	10.9	115	11.2	118
1 058 11.0 116 11.2 119 11.5 121 11.8 125 1 059 11.2 118 11.4 121 11.7 124 12.0 127 1 060 11.4 120 11.6 123 11.9 126 12.2 129 1 061 11.5 123 11.8 125 12.1 128 12.4 131 1 062 11.7 125 12.0 127 12.3 130 12.6 133 1 063 11.9 127 12.2 129 12.4 132 12.8 136 1 064 12.1 129 12.4 132 12.6 134 13.0 138 1 065 12.3 131 12.6 134 12.8 137 13.2 140 1 066 12.5 133 12.7 136 13.0 139 13.3 142 1 067 12.7 135 12.9 138 13.2 141 13.5 144 1 067 12.7 13.5	1 056	10.6	112	10.8	114	11.1	117	11.4	120
1 058 11.0 116 11.2 119 11.5 121 11.8 125 1 059 11.2 118 11.4 121 11.7 124 12.0 127 1 060 11.4 120 11.6 123 11.9 126 12.2 129 1 061 11.5 123 11.8 125 12.1 128 12.4 131 1 062 11.7 125 12.0 127 12.3 130 12.6 133 1 063 11.9 127 12.2 129 12.4 132 12.8 136 1 064 12.1 129 12.4 132 12.6 134 13.0 138 1 065 12.3 131 12.6 134 12.8 137 13.2 140 1 066 12.5 133 12.7 136 13.0 139 13.3 142 1 067 12.7 135 12.9 138 13.2 141 13.5 144 1 067 12.7 13.5	1 057	10.8	114	11.0	116	11.3	119	11.6	122
1 060 11.4 120 11.6 123 11.9 126 12.2 129 1 061 11.5 123 11.8 125 12.1 128 12.4 131 1 062 11.7 125 12.0 127 12.3 130 12.6 133 1 063 11.9 127 12.2 129 12.4 132 12.8 136 1 064 12.1 129 12.4 132 12.6 134 13.0 138 1 065 12.3 131 12.6 134 12.8 137 13.2 140 1 066 12.5 133 12.7 136 13.0 139 13.3 142 1 067 12.7 135 12.9 138 13.2 141 13.5 144 1 068 12.9 137 13.1 140 13.4 143 13.7 147 1 069 13.1 140 13.3 142 13.6 145 13.9 149 1 070 13.2 142	1 058	11.0	116	11.2	119	11.5	121		125
1 06111.512311.812512.112812.41311 06211.712512.012712.313012.61331 06311.912712.212912.413212.81361 06412.112912.413212.613413.01381 06512.313112.613412.813713.21401 06612.513312.713613.013913.31421 06712.713512.913813.214113.51441 06812.913713.114013.414313.71471 06913.114013.314213.614513.91491 07013.214213.514413.814814.11511 07113.414413.714714.015014.31531 07213.614613.914914.215214.51551 07313.814814.115114.415414.71581 07414.015014.215314.615614.91601 07514.215214.415514.715915.11621 07614.415414.615714.916115.31651 07714.515714.8160 <t< th=""><td>1 059</td><td>11.2</td><td>118</td><td>11.4</td><td>121</td><td>11.7</td><td>124</td><td>12.0</td><td>127</td></t<>	1 059	11.2	118	11.4	121	11.7	124	12.0	127
1 06211.712512.012712.313012.61331 06311.912712.212912.413212.81361 06412.112912.413212.613413.01381 06512.313112.613412.813713.21401 06612.513312.713613.013913.31421 06712.713512.913813.214113.51441 06812.913713.114013.414313.71471 06913.114013.314213.614513.91491 07013.214213.514413.814814.11511 07113.414413.714714.015014.31531 07213.614613.914914.215214.51551 07313.814814.115114.415414.71581 07414.015014.215314615614.91601 07514.215214.415514.715915.11621 07614.415414.615714.916115.31651 07614.415414.615714.916115.31651 07614.415414.6157 <td< th=""><td>1 060</td><td>11.4</td><td>120</td><td>11.6</td><td>123</td><td>11.9</td><td>126</td><td>12.2</td><td>129</td></td<>	1 060	11.4	120	11.6	123	11.9	126	12.2	129
1 06311.912712.212912.413212.81361 06412.112912.413212.613413212.81301381 06512.313112.613412.813713.21401 06612.513312.713613.013913.31421 06712.713512.913813.214113.51441 06812.913713.114013.414313.71471 06913.114013.314213.614513.91491 07013.214213.514413.814814.11511 07113.414413.714714.015014.31531 07213.614613.914914.215214.51551 07313.814814.115114.415414.71581 07414.015014.215314.615614.91601 07514.215214.415514.715915.11621 07614.415414.615714.916115.31651 07614.415414.615714.916115.31651 07614.415414.615714.916115.51671 07814.7159 <td< th=""><td>1 061</td><td>11.5</td><td>123</td><td>11.8</td><td>125</td><td>12.1</td><td>128</td><td>12.4</td><td>131</td></td<>	1 061	11.5	123	11.8	125	12.1	128	12.4	131
1 064 1 06512.1 12.3129 13112.4 	1 062	11.7	125	12.0	127	12.3	130	12.6	133
1 06512.313112.613412.813713.21401 06612.513312.713613.013913.31421 06712.713512.913813.214113.51441 06812.913713.114013.414313.71471 06913.114013.314213.614513.91491 07013.214213.514413.814814.11511 07113.414413.714714.015014.31531 07213.614613.914914.215214.51551 07313.814814.115114.415414.71581 07414.015014.215314.615614.91601 07514.215214.415514.715915.11621 07614.415414.615714.916115.31651 07714.515714.816015.116315.51671 07814.715915.016215.316515.71691 07914.916115.216415.516715.9171	1 063	11.9	127	12.2	129	12.4	132	12.8	136
1 066 1 067 1 067 1 06812.7 1 2.7 1 35 1 35 1 2.9136 1 2.9 1 38 1 3.2139 1 3.2 1 41 1 3.5 1 44 1 3.5 1 3.7142 1 44 1 44 1 3.71 069 1 070 1 3.2 1 071 1 3.4140 1 3.3 1 42 1 3.5 1 44 1 3.5142 1 3.6 1 43 1 44 1 3.7147 1 47 1 40 1 3.41 069 1 070 1 3.2 1 071 1 3.4140 1 42 1 42 1 3.5 1 42 1 3.5142 1 3.6 1 44 1 44 1 3.7142 1 3.6 1 44 1 4.0 1 50143 1 51 1 51 1 4.1 1 51 1 4.1 1 51 1 4.213.6 1 4.3 1 53149 1 4.3 1 531 072 1 073 1 3.8 1 074 1 4.0146 1 50 1 4.213.9 1 4.9 1 4.2152 1 4.5 1 4.3 1 53155 1 55 1 4.3 1 531 074 1 4.0 1 07414.0 1 50 1 4.2155 1 4.4 1 55 1 4.7 1 59 1 51 1 62162 1 53 1 4.6 1 56 1 57 1 4.9 1 61 1 5.3 1 65 1 5.5 1 671 075 1 076 1 4.4 1 4.4 1 54 1 4.7 1 59 1 57 1 4.8 1 60 1 51 1 62 1 51 1 63 1 5.5 1 67 1 69 1 5.7 1 69 1 61 1 5.9 1 71	1 064	12.1	129	12.4	132	12.6	134	13.0	138
1 06712.713512.913813.214113.51441 06812.913713.114013.414313.71471 06913.114013.314213.614513.91491 07013.214213.514413.814814.11511 07113.414413.714714.015014.31531 07213.614613.914914.215214.51551 07313.814814.115114.415414.71581 07414.015014.215314.615614.91601 07514.215214.415514.715915.11621 07614.415414.615714.916115.31651 07714.515714.816015.116315.51671 07814.715915.016215.316515.71691 07914.916115.216415.516715.9171	1 065	12.3	131	12.6	134	12.8	137	13.2	140
1 06812.913713.114013.414313.71471 06913.114013.314213.614513.91491 07013.214213.514413.814814.11511 07113.414413.714714.015014.31531 07213.614613.914914.215214.51551 07313.814814.115114.415414.71581 07414.015014.215314.615614.91601 07514.215214.415514.715915.11621 07614.415414.615714.916115.31651 07714.515714.816015.116315.51671 07814.715915.016215.316515.71691 07914.916115.216415.516715.9171	1 066	12.5	133	12.7	136	13.0	139	13.3	142
1 069 1 070 1 3.2 1 07113.1 1 42 1 3.2 1 3.4140 1 42 1 42 1 4413.3 1 3.5 1 44 1 4713.6 1 44 1 3.8 1 4.0145 1 48 1 4.1 1 5013.9 1 4.1 1 51 1 4.3149 1 51 1 51 1 531 072 1 072 1 073 1 3.8 1 074146 1 4.013.9 1 4.8 1 4.1 1 51 1 4.1 1 51 1 51 1 4.4 1 51 1 4.4 1 5214.5 1 52 1 4.5 1 55 1 4.7 1 5614.5 1 55 1 55 1 4.7 1 5614.7 1 59 1 51 1 51 1 601 075 1 4.2 1 07414.2 1 50152 1 4.4 1 5414.4 1 55 1 4.7 1 59 1 5615.1 1 62 1 601 075 1 4.2 1 076 1 4.4 1 54 1 4.4 1 54155 1 4.6 1 57 1 4.8 1 6015.1 1 59 1 5.1 1 6315.1 1 62 1 53 1 65 1 5.7 1 69 1 5.71 078 1 07914.7 1 4.9159 1 6115.7 1 5.9169 1 5.1	1 067	12.7	135	12.9	138	13.2	141	13.5	144
1 070 1 07113.2 13.4142 14413.5 13.7144 14713.8 140148 15014.1 14.3151 1531 072 1 073 1 073 1 07413.6 14.0146 13.8 14814.9 14.114.2 151 14.4152 15214.5 14.5155 1551 074 1 4.0140 150150 14.2142 153156 14.614.9 1601601 075 1 075 1 076 1 14.4 1 077152 15414.4 154155 15714.7 14.8159 16115.1 163162 15.51 078 1 07914.7 14.9159 16115.7 15.9167169 15.9171	1 068	12.9	137	13.1	140	13.4	143	13.7	147
1 07113.414413.714714.015014.31531 07213.614613.914914.215214.51551 07313.814814.115114.415414.71581 07414.015014.215314.615614.91601 07514.215214.415514.715915.11621 07614.415414.615714.916115.31651 07714.515714.816015.116315.51671 07814.715915.016215.316515.71691 07914.916115.216415.516715.9171	1 069	13.1	140	13.3	142	13.6	145	13.9	149
1 072 13.6 146 13.9 149 14.2 152 14.5 155 1 073 13.8 148 14.1 151 14.4 154 14.7 158 1 074 14.0 150 14.2 153 14.6 156 14.9 160 1 075 14.2 152 14.4 155 14.7 159 15.1 162 1 076 14.4 154 14.6 157 14.9 161 15.3 165 1 077 14.5 157 14.8 160 15.1 162 161 15.3 165 1 077 14.5 157 14.8 160 15.1 163 15.5 167 1 078 14.7 159 15.0 162 15.3 165 15.7 169 1 079 14.9 161 15.2 164 15.5 167 15.9 171	1 070	13.2	142	13.5	144	13.8	148	14.1	151
1 073 1 07413.8 14.0148 15014.1 14.2151 15314.4 14.6154 15614.7 14.9158 1601 075 1 07514.2152 15214.4 14.6155 15714.7 14.9159 16115.1 15.3 165162 1611 076 1 07714.4 14.5154 15714.6 14.8157 16014.9 16115.3 165165 1671 078 1 07914.7 14.9159 16115.0 15.2162 16415.3 165167169 15.9	1 071	13.4	144	13.7	147	14.0	150	14.3	153
1 07414.015014.215314.615614.91601 07514.215214.415514.715915.11621 07614.415414.615714.916115.31651 07714.515714.816015.116315.51671 07814.715915.016215.316515.71691 07914.916115.216415.516715.9171	1 072	13.6	146	13.9	149	14.2	152	14.5	155
1 07514.215214.415514.715915.11621 07614.415414.615714.916115.31651 07714.515714.816015.116315.51671 07814.715915.016215.316515.71691 07914.916115.216415.516715.9171						14.4		14.7	
1 07614.415414.615714.916115.31651 07714.515714.816015.116315.51671 07814.715915.016215.316515.71691 07914.916115.216415.516715.9171	1 074	14.0	150	14.2	153	14.6	156	14.9	160
1 07714.515714.816015.116315.51671 07814.715915.016215.316515.71691 07914.916115.216415.516715.9171	1 075	14.2	152	14.4	155	14.7	159		162
1 07814.715915.016215.316515.71691 07914.916115.216415.516715.9171	1 076	14.4	154	14.6	157	14.9			165
1 079 14.9 161 15.2 164 15.5 167 15.9 171	1 077	14.5	157	14.8	160	15.1	163	15.5	167
						15.3	165	15.7	169
1080 15.1 163 15.4 166 15.7 170 16.1 174									
	1 080	15.1	163	15.4	166	15.7	170	16.1	174

 $D_{\rm c}$ is the density (mass per unit volume) of solution (in kg/m³) at a temperature t (in °C) [for many

$\frac{f \text{ the col}}{2}$	a °C	2	5 °C	3	o°C	Ę	85 °C	4	40 °C	t
g	G	g	G	g	G	g	G	g	G	D_t
11.3	119	11.7	123	12.1	127	12.5	132	12.9	136	1 054
11.5	122	11.9	125	12.3	129	12.7	134	13.1	138	$1 \ 055$
11.7	124	12.1	128	12.5	132	12.9	136	13.3	140	$1\ 056$
11.9	126	12.3	130	12.7	134	13.1	138	13.5	143	1 057
12.1	128	12.5	132	12.9	136	13.3	141	13.7	145	$1\ 058$
12.3	131	12.7	134	13.1	138	13.5	143	13.9	147	1 059
12.5	133	12.9	137	13.3	141	13.7	145	14.1	150	1 060
12.7	135	13.1	139	13.5	143	13.9	148	14.3	152	1 061
12.9	137	13.3	141	13.7	145	14.1	150	14.5	154	1 062
13.1	139	13.5	143	13.9	148	14.3	152	14.7	157	1 063
13.3	142	13.7	146	14.1	150	14.5	155	14.9	159	1 064
13.5	144	13.9	148	14.3	152	14.7	157	15.1	161	$1\ 065$
13.7	146	14.1	150	14.5	154	14.9	159	15.3	164	1 066
13.9	148	14.3	152	14.7	157	15.1	161	15.5	166	1 067
14.1	151	14.5	155	14.9	159	15.3	164	15.8	168	1 068
14.3	153	14.7	157	15.1	161	15.5	166	16.0	171	1 069
14.5	155	14.9	159	15.3	164	15.7	169	16.2	173	1 070
14.7	157	15.1	162	15.5	166	16.0	171	16.4	175	1 071
14.9	160	15.3	164	15.7	168	16.2	173	16.6	178	1 072
15.1	162	15.5	166	15.9	171	16.4	176	16.8	180	1 073
15.3	164	15.7	168	16.1	173	16.6	178	17.0	182	$1 \ 074$
15.5	166	15.9	171	16.3	175	16.8	180	17.2	185	1 075
15.7	169	16.1	173	16.5	178	17.0	183	17.4	187	1 076
15.9	171	16.3	175	16.7	180	17.2	185	17.6	189	1 077
16.1	173	16.5	178	16.9	182	17.4	187	17.8	192	1 078
16.3	176	16.7	180	17.1	185	17.6	189	18.0	194	1 079
16.5	178	16.9	182	17.3	187	17.8	192	18.2	197	1 080

g is the mass (in g) of HCl in 100 g mass of solution. G is the mass (in g) of HCl in a quantity of solution occupying 1 L at the temperative solution occup

		s per unit vo						
		umed that in						rometer at
		and that the			relative den	sity hydrom	eter at t is	
		ater than D_i			1		1	
t	0	°C	5	°C	10	°C	15	°C
D_t	g	G	g	G	g	G	g	G
1 081	15.3	165	15.6	168	15.9	172	16.3	176
1 082	15.5	167	15.8	170	16.1	174	16.5	178
1 083	15.7	169	15.9	173	16.3	176	16.7	180
1 084	15.8	172	16.1	175	16.5	179	16.9	183
1 085	16.0	174	16.3	177	16.7	181	17.1	185
1 086	16.2	176	16.5	179	16.9	183	17.2	187
1 087	16.4	178	16.7	181	17.1	185	17.4	190
1 088	16.6	180	16.9	184	17.2	188	17.6	192
1 089	16.8	183	17.1	186	17.4	190	17.8	194
1 090	16.9	185	17.3	188	17.6	192	18.0	196
1 091	17.1	187	17.4	190	17.8	194	18.2	199
1 092	17.3	189	17.6	193	18.0	197	18.4	201
1 093	17.5	191	17.8	195	18.2	199	18.6	203
1 094	17.7	193	18.0	197	18.4	201	18.8	206
1 095	17.9	196	18.2	199	18.6	203	19.0	208
1 096	18.0	198	18.4	201	18.8	206	19.2	210
1 097	18.2	200	18.6	204	19.0	208	19.4	213
1 098	18.4	202	18.8	206	19.1	210	19.6	215
1 099	18.6	204	18.9	208	19.3	212	19.8	217
1 100	18.8	206	19.1	210	19.5	215	20.0	219
1 101	19.0	209	19.3	213	19.7	217	20.1	222
1 102	19.1	211	19.5	215	19.9	219	20.3	224
1 103	19.3	213	19.7	217	20.1	222	20.5	226
1 104	19.5	215	19.9	219	20.3	224	20.7	229
1 105	19.7	217	20.1	222	20.5	226	20.9	231
1 106	19.9	220	20.2	224	20.7	228	21.1	233
1 107	20.1	222	20.4	226	20.8	231	21.3	236
	1	1	L	1	1	l		I

 $D_{\rm c}$ is the density (mass per unit volume) of solution (in kg/m³) at a temperature t (in °C) [for many

2	20 °C	2	25 °C	3	0 °C	:	35 °C	4	40 °C	t
g	G	g	G	g	G	g	G	g	G	D_t
16.7	180	17.1	185	17.5	189	18.0	194	18.4	199	1 081
16.9	182	17.3	187	17.7	192	18.2	197	18.6	201	1 082
17.1	185	17.5	189	17.9	194	18.4	199	18.8	204	1 083
17.3	187	17.7	192	18.1	196	18.6	201	19.0	206	1 084
17.5	189	17.9	194	18.3	199	18.8	204	19.2	209	1 085
17.6	192	18.1	196	18.5	201	19.0	206	19.4	211	1 086
17.8	194	18.3	199	18.7	203	19.2	208	19.6	213	1 087
18.0	196	18.5	201	18.9	206	19.4	211	19.8	216	1 088
18.2	199	18.7	203	19.1	208	19.6	213	20.0	218	1 089
18.4	201	18.9	206	19.3	211	19.8	216	20.2	221	1 090
18.6	203	19.1	208	19.5	213	20.0	218	20.4	223	1 091
18.8	206	19.3	210	19.7	215	20.2	220	20.7	226	1 092
19.0	208	19.5	213	19.9	218	20.4	223	20.9	228	1 093
19.2	210	19.7	215	20.1	220	20.6	225	21.1	230	1 094
19.4	213	19.9	218	20.3	222	20.8	228	21.3	233	1 095
19.6	215	20.1	220	20.5	225	21.0	230	21.5	235	1 096
19.8	217	20.3	222	20.7	227	21.2	232	21.7	238	1 097
20.0	220	20.5	225	20.9	230	21.4	235	21.9	240	1 098
20.2	222	20.7	227	21.1	232	21.6	237	22.1	243	1 099
20.4	224	20.8	229	21.3	234	21.8	240	22.3	245	1 100
20.6	227	21.0	232	21.5	237	22.0	242	22.5	248	1 101
20.8	229	21.2	234	21.7	239	22.2	245	22.7	250	1 102
21.0	231	21.4	236	21.9	242	22.4	247	22.9	252	1 103
21.2	234	21.6	239	22.1	244	22.6	249	23.1	255	1 104
21.4	236	21.8	241	22.3	246	22.8	252	23.3	257	1 105
21.6	238	22.0	244	22.5	249	23.0	254	23.5	260	1 106
21.7	241	22.2	246	22.7	251	23.2	257	23.7	262	1 107

g is the mass (in g) of HCl in 100 g mass of solution.

							(in °C) [for	
		umed that is						lrometer at
		and that th				sity hydrom	teter at t is	
		ater than D					1	
t	0	°C	5	°C	10	°C	15	°C
D_t	g	G	g	G	g	G	g	G
1 108	20.2	224	20.6	228	21.0	233	21.5	238
1 109	20.4	226	20.8	231	21.2	235	21.7	240
1 110	20.6	229	21.0	233	21.4	238	21.9	243
1 111	20.8	231	21.2	235	21.6	240	22.1	245
$1\ 112$	21.0	233	21.4	238	21.8	242	22.2	247
$1\ 113$	21.1	235	21.6	240	22.0	245	22.4	250
1 114	21.3	238	21.7	242	22.2	247	22.6	252
$1\ 115$	21.5	240	21.9	244	22.4	249	22.8	254
1 116	21.7	242	22.1	247	22.5	252	23.0	257
1 117	21.9	244	22.3	249	22.7	254	23.2	259
1 118	22.1	247	22.5	251	22.9	256	23.4	261
1 119	22.2	249	22.7	254	23.1	259	23.6	264
1 1 2 0	22.4	251	22.8	256	23.3	261	23.8	266
$1\ 121$	22.6	253	23.0	258	23.5	263	24.0	269
1 122	22.8	256	23.2	261	23.7	266	24.1	271
1 123	23.0	258	23.4	263	23.9	268	24.3	273
1 124	23.1	260	23.6	265	24.0	270	24.5	276
$1\ 125$	23.3	262	23.8	267	24.2	273	24.7	278
1 126	23.5	265	24.0	270	24.4	275	24.9	280
$1\ 127$	23.7	267	24.1	272	24.6	277	25.1	283
1 128	23.9	269	24.3	274	24.8	280	25.3	285
1 129	24.1	272	24.5	277	25.0	282	25.5	288
1 130	24.2	274	24.7	279	25.2	284	25.7	290
$1\ 131$	24.4	276	24.9	281	25.4	287	25.9	293
1 132	24.6	279	25.1	284	25.5	289	26.1	295
$1\ 133$	24.8	281	25.2	286	25.7	292	26.3	297
$1\ 134$	25.0	283	25.4	288	25.9	294	26.4	300
	1	1						

e density (mass per unit volume) of solution (in kg/m^3) at a temperature t (in °C) [for many ה : +h

g is the mass (in g) of HCl in 100 g mass of solution.

G is the mass (in g) of HCl in a quantity of solution occupying 1 L at the temperature stated at the head of the column.

20	°C	25	°C	30	°C	35	°C	40	°C	t
 g	G	g	G	g	G	g	G	g	G	D_t
21.9 22.1 22.3	243 246 248	22.4 22.6 22.8	248 251 253	22.9 23.1 23.3	$254 \\ 256 \\ 259$	23.4 23.6 23.8	259 262 264	$23.9 \\ 24.1 \\ 24.3$	$265 \\ 267 \\ 270$	1 108 1 109 1 110
22.5 22.7 22.9	$250 \\ 253 \\ 255$	23.0 23.2 23.4	$256 \\ 258 \\ 260$	$23.5 \\ 23.7 \\ 23.9$	261 263 266	$24.0 \\ 24.2 \\ 24.4$	$267 \\ 269 \\ 271$	$24.5 \\ 24.7 \\ 24.9$	$272 \\ 275 \\ 277$	$egin{array}{c} 1 \ 111 \\ 1 \ 112 \\ 1 \ 113 \end{array}$
23.1 23.3 23.5	257 260 262	23.6 23.8 24.0	263 265 267	24.1 24.3 24.5	268 271 273	24.6 24.8 25.0	274 276 279	25.1 25.3 25.5	280 282 285	$ 1 114 \\ 1 115 \\ 1 116 $
$23.7 \\ 23.9 \\ 24.1$	265 267 269	$24.2 \\ 24.4 \\ 24.5$	$270 \\ 272 \\ 275$	$24.7 \\ 24.9 \\ 25.1$	276 278 280	$25.2 \\ 25.4 \\ 25.6$	281 284 286	$25.7 \\ 25.9 \\ 26.1$	287 290 293	1 117 1 118 1 119
$24.3 \\ 24.4 \\ 24.6$	$272 \\ 274 \\ 276$	$24.7 \\ 24.9 \\ 25.1$	277 280 282	$25.3 \\ 25.5 \\ 25.7$	283 285 288	$25.8 \\ 26.0 \\ 26.2$	289 291 294	$26.4 \\ 26.6 \\ 26.8$	295 298 300	1 120 1 121 1 122
$24.8 \\ 25.0 \\ 25.2$	279 281 284	$25.3 \\ 25.5 \\ 25.7$	285 287 289	$25.9 \\ 26.1 \\ 26.3$	290 293 295	26.4 26.6 26.8	296 299 302	27.0 27.2 27.4	303 305 308	$egin{array}{c} 1 \ 123 \\ 1 \ 124 \\ 1 \ 125 \end{array}$
$25.4 \\ 25.6 \\ 25.8$	286 289 291	25.9 26.1 26.3	292 294 297	$26.5 \\ 26.7 \\ 26.9$	298 300 303	27.0 27.2 27.4	304 307 309	27.6 27.8 28.0	311 313 316	1 126 1 127 1 128
$26.0 \\ 26.2 \\ 26.4$	294 296 298	26.5 26.7 26.9	299 302 304	$27.1 \\ 27.3 \\ 27.5$	306 308 311	27.6 27.8 28.0	$312 \\ 315 \\ 317$	28.2 28.4 28.6	319 321 324	1 129 1 130 1 131
 $26.6 \\ 26.8 \\ 27.0$	301 303 306	$27.1 \\ 27.3 \\ 27.5$	307 309 312	27.7 27.9 28.1	313 316 318	28.2 28.4 28.7	320 322 325	28.8 29.1 29.3	327 329 332	$\begin{array}{c} 1 \ 132 \\ 1 \ 133 \\ 1 \ 134 \end{array}$

purposes i t gives the	D_t is the density (mass per unit volume) of solution (in kg/m ³) at a temperature <i>t</i> (in °C) [for many purposes it can be assumed that irrespective of the value of <i>t</i> the reading of a BS density hydrometer at <i>t</i> gives the density D_t , and that the reading of a 60/60 °F relative density hydrometer at <i>t</i> is numerically 0.001 greater than $D_{t/1\ 000}$ (see Appendix A)].								
t	0	°C	5	°C	10	°C	15	°C	
D_t	g	G	g	G	g	G	g	G	
$ 1 135 \\ 1 136 \\ 1 137 $	25.2	286	25.6	291	26.1	296	26.6	302	
	25.3	288	25.8	293	26.3	299	26.8	305	
	25.5	290	26.0	295	26.5	301	27.0	307	
1 138	25.7	293	26.2	298	26.7	304	27.2	310	
1 139	25.9	295	26.4	300	26.9	306	27.4	312	
1 140	26.1	297	26.6	303	27.1	309	27.6	315	
$1 \ 141 \\ 1 \ 142 \\ 1 \ 143$	26.3	300	26.8	305	27.3	311	27.8	317	
	26.4	302	26.9	308	27.5	313	28.0	320	
	26.6	304	27.1	310	27.6	316	28.2	322	
1 144	26.8	307	27.3	313	27.8	318	28.4	325	
1 145	27.0	309	27.5	315	28.0	321	28.6	327	
1 146	27.2	311	27.7	317	28.2	324	28.8	330	
1 147	27.4	314	27.9	320	28.4	326	29.0	332	
1 148	27.5	316	28.1	322	28.6	329	29.2	335	
1 149	27.7	319	28.3	325	28.8	331	29.4	337	
$\begin{array}{c} 1 \ 150 \\ 1 \ 151 \\ 1 \ 152 \end{array}$	27.9	321	28.4	327	29.0	334	29.6	340	
	28.1	323	28.6	330	29.2	336	29.8	343	
	28.3	326	28.8	332	29.4	339	30.0	345	
$egin{array}{c} 1 \ 153 \ 1 \ 154 \ 1 \ 155 \end{array}$	28.5	328	29.0	334	29.6	341	30.2	348	
	28.7	331	29.2	337	29.8	344	30.4	350	
	28.8	333	29.4	339	30.0	347	30.6	353	
$\begin{array}{c} 1 \ 156 \\ 1 \ 157 \\ 1 \ 158 \end{array}$	29.0	335	29.6	342	30.2	349	30.8	356	
	29.2	338	29.8	344	30.4	352	31.0	358	
	29.4	340	29.9	347	30.6	354	31.2	361	
1 159 1 160 1 161	29.6 29.8 29.9	343 345 348			30.8 31.0 31.2	357 360 362	31.4 31.6 31.8	363 366 369	

<i>G</i> is the n of the colu) of HCl ir	n a quanti	ty of solut	tion occup	ying 1 L a	at the tem	perature s	stated at t	he head
20	°C	25	°C	30	°C	35	°C	40	°C	t
g	G	g	G	g	G	g	G	g	G	D_t
27.2 27.4 27.6	308 311 313	27.7 27.9 28.1	315 317 320	28.3 28.5 28.7	321 324 326	28.9 29.1 29.3	328 330 333	29.5 29.7 29.9	334 337 340	$\begin{array}{c}1\ 135\\1\ 136\\1\ 137\end{array}$
27.8 28.0 28.2 28.4	316 318 321 324	28.3 28.5 28.7 28.9	322 325 327 330	28.9 29.1 29.3 29.5	329 331 334 337	29.5 29.7 29.9	335 338 341			1 138 1 139 1 140 1 141
28.6 28.8 29.0 29.2 29.4	326 329 331 334 336	29.1 29.3 29.5 29.7 29.9	332 335 338 340 343	29.7 29.9 30.1 30.3 30.5	339 342 344 347 350					1 142 1 143 1 144 1 145 1 146
29.6 29.7 29.9	339 342 344	30.1 30.3 30.5	$345 \\ 348 \\ 351$	30.7 30.9 31.1	352 355 358					1 147 1 148 1 149
$30.1 \\ 30.3 \\ 30.5$	347 349 352	30.7 30.9 31.1	353 356 359	31.3 31.5 31.7	360 363 366					$\begin{array}{c} 1 \ 150 \\ 1 \ 151 \\ 1 \ 152 \end{array}$
$30.7 \\ 30.9 \\ 31.1$	354 357 360	31.3 31.5 31.7	361 364 366	31.9 32.1 32.4	368 371 374					$\begin{array}{c} 1 \ 153 \\ 1 \ 154 \\ 1 \ 155 \end{array}$
$31.3 \\ 31.5 \\ 31.7$	362 365 368	31.9 32.1 32.3	369 372 375	32.6 32.8 33.0	376 379 382					$1 156 \\ 1 157 \\ 1 158$
31.9 32.1 32.3	370 373 375	32.6 32.8 33.0	377 380 383	33.2 33.4 33.6	384 387 390					1 159 1 160 1 161

g is the mass (in g) of HCl in 100 g mass of solution. *G* is the mass (in g) of HCl in a quantity of solution of

1 T . . 1t. tot 1 . . 1 1

 D_t is the density (mass per unit volume) of solution (in kg/m³) at a temperature *t* (in °C) [for many purposes it can be assumed that irrespective of the value of *t* the reading of a BS density hydrometer at *t* gives the density D_t . and that the reading of a 60/60 °F relative density hydrometer at *t* is numerically 0.001 greater than $D_{t/1\ 000}$ (see Appendix A)].

t	0			°C	10) °C	15 °C	
D_t	g	G	g	G	g	G	g	G
1 162 1 163 1 164					31.4 31.6 31.8	365 368 370	32.0 32.2 32.4	371 374 377
1 165 1 166 1 167					32.0 32.2 32.4	373 375 378	32.6 32.8 33.0	379 382 385
1 168 1 169 1 170					32.6 32.8 33.0	381 383 386	33.2 33.4 33.6	388 390 393
$egin{array}{c} 1 \ 171 \\ 1 \ 172 \\ 1 \ 173 \end{array}$					33.2 33.4 33.6	389 391 394	33.8 34.0 34.2	396 398 401
1 174 1 175 1 176					33.8 34.0 34.2	397 400 402	34.4 34.6 34.8	404 406 409
1 177 1 178 1 179					34.4 34.6 34.8	405 408 410	35.0 35.2 35.4	412 415 417
1 180 1 181 1 182					$35.0 \\ 35.2 \\ 35.4$	413 416 418	$35.6 \\ 35.8 \\ 36.0$	420 423 426
1 183 1 184 1 185					35.6 35.8 36.0	421 424 427	36.2 36.4 36.6	429 431 434
1 186 1 187 1 188					36.2 36.4 36.6	429 432 435	36.8 37.0 37.3	437 440 443

2	20 °C	2	5 °C	ę	30 °C	35	°C	40	°C	t
g	G	g	G	g	G	g	G	g	G	D_t
32.5	378	33.2	385	33.8	393					1 162
32.8	381	33.4	388	34.0	396					$1\ 163$
33.0	384	33.6	391	34.2	398					1 164
33.2	386	33.8	394	34.4	401					1 165
33.4	389	34.0	396	34.6	404					1 166
33.6	392	34.2	399	34.8	407					1 167
33.8	394	34.4	402	35.1	410					1 168
34.0	397	34.6	405	35.3	412					1 169
34.2	400	34.8	408	35.5	415					1 170
34.4	403	35.0	410	35.7	418					1 171
34.6	405	35.2	413	35.9	421					1172
34.8	408	35.5	416	36.1	424					1173
35.0	411	35.7	419	36.3	427					1 174
35.2	414	35.9	422	36.5	429					$1\ 175$
35.4	416	36.1	424	36.8	432					1 176
35.6	419	36.3	427	37.0	435					1 177
35.8	422	36.5	430	37.2	438					1 178
36.0	425	36.7	433	37.4	441					1 179
36.2	428	36.9	436	37.6	444					1 180
36.4	430	37.2	439	37.9	447					1 181
36.6	433	37.4	442	38.1	450					1 182
36.8	436	37.6	445							1 183
37.1	439	37.8	448							1 184
37.3	442	38.0	450							1 185
37.5	444	38.2	453							1 186
37.7	447	38.4	456							1 187
37.9	450	38.7	459							1 188

g is the mass (in g) of HCl in 100 g mass of solution.

G is the mass (in g) of HCl in a quantity of solution occupying 1 L at the temperature stated at the head of the column.

 D_t is the density (mass per unit volume) of solution (in kg/m³) at a temperature *t* (in °C) [for many purposes it can be assumed that irrespective of the value of *t* the reading of a BS density hydrometer at *t* gives the density D_t , and that the reading of a 60/60 °F relative density hydrometer at *t* is numerically 0.001 greater than $D_{t/1\ 000}$ (see Appendix A)].

t	0 °	°C	5 °C		10	°C	1	5 °C
D_t	g	G	g	G	g	G	g	G
1 189					36.8	438	37.5	445
1 190					37.0	440	37.7	448
1 191					37.2	443	37.9	451
1 192					37.4	446	38.1	454
1 193					37.6	449	38.3	457
1 194					37.8	452	38.5	460
1 195					38.0	455	38.7	462
1 196					38.2	457	38.9	465
1 197					38.5	460	39.1	468
1 198					38.7	463	39.3	471
1 199					38.9	466	39.5	474
1 200					39.1	469	39.8	477
1 201					39.3	472		
1 202					39.5	475		
1 203					39.7	478		
1 204					40.0	481		
1 205					40.2	484		

g is the mass (in g) of HCl in 100 g mass of solution.

G is the mass (in g) of HCl in a quantity of solution occupying 1 L at the temperature stated at the head of the column.

20	°C	25	°C	30	°C	35	°C	40	°C	t
g	G	g	G	g	G	g	G	g	G	D_t
38.1 38.3 38.5	453 456 459									1 189 1 190 1 191
38.7 39.0 39.2	462 465 468									1 192 1 193 1 194
39.4 39.6 39.8	470 473 476									1 195 1 196 1 197
40.0	480									1 198 1 199 1 200
										1 201 1 202 1 203
										1 204 1 205

Appendix A Correction of readings taken on BS hydrometers

For many purposes it may be assumed that a reading taken at a temperature t (in °C) on a BS density hydrometer gives the density of the liquid D_t (in kg/m³) at t.

When a relative density hydrometer is used in a liquid at *t* the reading may be assumed to give the relative density of the liquid at *t* relative to water at 60 °F. Multiplying the reading thus obtained by 1 000 and applying the correction given in Table 2 will convert the reading to D_t (in kg/m³) at *t* before entering Table 1.

Table 2 — Corrections to be applied toobtain density at t

Relative density <i>t</i> /60 °F × 1 000	Correction to give density at t
	kg/m ³
1 000	- 1.0
1 100	- 1.1
1 200	- 1.2
NOTE The sign being negat subtracted to obtain the dense	ive the quantity noted is to be ity at t .

Occasions may however arise when greater accuracy is necessary. Additional corrections can then be applied for:

a) the scale error of the hydrometer;

b) the difference between the temperature of the liquid and the standard temperature of the hydrometer;

c) the difference between the surface tension of the liquid and that for which the hydrometer is adjusted. These corrections are considered in detail as follows.

1) *Corrections for scale errors.* The maximum permissible errors allowed on BS hydrometers are given in Table 7. When these errors are too large to be ignored hydrometers furnished with National Measurement Accreditation Service certificates of calibration should be obtained and the corrections given thereon should be applied.

2) *Temperature corrections*. When the hydrometer reading is taken at a temperature t other than the standard temperature t_s (20 °C or 15 °C) then the reading is in error due to the difference in the volume of the hydrometer between t_s and t.

Appropriate corrections for making allowance for this temperature effect are given in Table 3.

	-		e de la construcción de la const				
Standard temperate	ure t_s of hydrometer	Hydrometer reading	ng at temperature t				
20 °C	15 °C	1 000	1 200				
Temperatur	re t of liquid	Correction (0.1 kg/m ³)					
°C	°C						
0		+ 5	+ 6				
5	0	+ 4	+ 5				
10	5	+ 3	+ 3				
15	10	+ 1	+ 2				
20	15	0	0				
25	20	- 1	-2				
30	25	- 3	- 3				
35	30	- 4	-5				
40	35	-5	- 6				
	40	- 6	- 8				
NOTE 1 When the si and when negative to		ction is to be added to th	he hydrometer reading				

NOTE 2 Table 3 is based on the value $0.000\ 025$ per degree Celsius for the coefficient of cubical expansion of the hydrometer.

3) Surface tension corrections

i) For hydrometers that are used in an overflow vessel so as to ensure that the acid surface is truly clean. Using this means the highest accuracy can be achieved.

Values of the surface tensions of clean surfaces of aqueous solutions of hydrochloric acid at 20 °C are given in Table 4. These are derived from data given in the International Critical Tables (1928) Vol. IV, page 464. It is unlikely that the values at other temperatures over the range 0 °C to 40 °C differ by more than 4 mN/m from the values at 20 °C.

Table 4 — Surface tensions of aqueous solutions of hydrochloric acid at 20 $^\circ\mathrm{C}$

Density of solution at 20 °C	Surface tension of solution at 20 °C
kg/m ³	mN/m
1 000	73
1 050	72
1 100	71
1 150	69
1 200	65

When the highest accuracy is required hydrometers adjusted for the high surface tension value 75 mN/m should be used. An indication of possible errors, in the form of corrections which may be applied on account of the difference between the surface tension of the hydrochloric acid solution and the surface tension for which the hydrometer is graduated, is given in Table 8 of BS 718:1979.

It should be observed that it is of little advantage to apply these surface tension corrections unless corrections for scale errors and temperature are also applied.

ii) For hydrometers used without special precautions for obtaining a clean acid surface. In these circumstances the surface tensions of aqueous solutions are usually less than the surface tension values given in Table 4 for clean surfaces. Also, since the values depend to a great extent on the degree of contamination of the surface, the effective surface tension is erratic. Hence, when using ordinary hydrometer jars without overflow, it is not possible to assign a reliable value to the surface tension of the acid solution without measuring it. Under these conditions surface tension corrections are usually ignored. It may, however, be assumed that under ordinary conditions of cleanliness the values lie between 40 mN/m and 70 mN/m. It is therefore appropriate to use a BS hydrometer adjusted for 55 mN/m. The error then introduced by ignoring surface tension is unlikely to exceed the values given in Table 5.

Table 5 — Maximum errors introduced by ignoring surface tension when reading BS hydrometers, adjusted for 55 mN/m, in aqueous solutions of hydrochloric acid in an ordinary hydrometer jar

Density of acid solution	BS hydrometers adjusted for 55 mN/m						
(in kg/m³)	L20	L50	M50	M100	S50		
		Max	imum error (in kg	g/m³)			
1 000 to 1 200	± 0.2	± 0.9					

It is of interest to examine the overall effect of ignoring corrections under a), b) and c) when using BS hydrometers adjusted for the medium surface tension value. In Table 6 the hydrometers are assumed to be floating in hydrochloric acid solution of density between 1 000 kg/m³ and 1 150 kg/m³ at a temperature differing by \pm 10 degrees Celsius from the standard temperature of the hydrometer.

Series	L20	L50	M50	M100	S50
Value of one sub-division (kg/m ³)	0.2	0.5	1.0	2.0	2.0
	kg/m ³				
a) Maximum permissible scale corrections	± 0.2	± 0.5	± 1.0	± 2.0	± 2.0
b) Temperature corrections for \pm 10 °C	± 0.3				
c) Maximum estimated surface tension corrections	± 0.2	± 0.4	± 0.7	± 1.1	± 0.9
Maximum value of total corrections	± 0.7	± 1.2	± 2.0	± 3.4	± 3.2

Table 6 — Maximum errors due to omission of all corrections to BS hydrometers adjusted for 55 mN/m

Error in grams in determined strength of solution of density 1 100 kg/m³ at 30 $^{\circ}$ C (21.3 g of HCl per 100 g of solution or 234 g of HCl per 1 L of solution) corresponding to total corrections above.

	g	g	g	g	g
HCl in 100 g of solution	± 0.2	± 0.2	± 0.4	± 0.7	± 0.6
HCl in 1 L of solution	± 2	± 3	± 5	± 8	± 8

NOTE It is assumed above that a BS density hydrometer was used. If a relative density hydrometer had been used without correction from Table 2, the errors in strength resulting from the neglect of *all corrections*, would be between the values, in grams, given below.

	g	g	g	g	g
HCl in 100 g of solution	+ 0.1	0	-0.2	-0.5	-0.4
	+ 0.4	+0.5	+ 0.6	+0.9	+ 0.9
HCl in 1 L of solution	+ 1	0	-2	-5	-5
	+ 5	+ 6	+ 8	+ 11	+ 10

Example of application of hydrometer corrections

Hydrometer used: density hydrometer L50 range 1 100 kg/m³ to 1 150 kg/m³ at 20 °C adjusted for 75 mN/m, ascertained scale error + 0.5 kg/m³ (i.e. maximum permissible positive error).

Temperature of acid solution Uncorrected hydrometer reading using overflow technique	27 °C 1 106.5 kg/m³		
Corrections	0		
For scale error	-0.5 kg/m ³		
For temperature (from Table 3)	-0.2 kg/m 3		
For surface tension (from Table 8 of BS 718:1979)	-0.1 kg/m^3		
Then density of acid solution at 27 °C	$1 \ 105.7 \ \text{kg/m}^3$		

By interpolation in Table 1 a solution of density 1 105.7 kg/m³ at 27 $^{\circ}$ C contains 22.1 g of HCl in 100 g of solution and 1 L of solution contains 245 g of HCl.

If the corrections for scale error, temperature and surface tension had been ignored, the values would have been 22.3 g and 247 g respectively.

Appendix B BS hydrometers available for use in conjunction with the tables

BS 718 affords a choice of hydrometers suitable for use in aqueous solutions of hydrochloric acid. They may have scales of density at 20 $^{\circ}$ C or 15 $^{\circ}$ C.

The choice of the hydrometer series will depend on the accuracy required and the amount of solution available. Table 7 gives the essential features of the various series of instruments with normal (N) tolerances suitable for aqueous solutions.

To use the hydrometers given in Table 7 to the best advantage (see Appendix A) it is recommended that instruments adjusted for the high surface tension category (75 mN/m) should be used in an overflow vessel as described in BS 718. If considered necessary, adjustments for the surface tension of the acid solution may also be made.

For work of lower accuracy hydrometers adjusted for the medium surface tension category (55 mN/m) may be used without adopting the overflow technique (see Table 5).

Series	Maximum total length			and value	scale divisions of the scale erval	Minimum scale length (nominal range)	Bulb diameter		Volume below lowest graduation line of nominal range		Extension of scale at each end beyond upper and lower nominal	Maximum permitted error at any point on the scale
							min.	max.	min.	max.	limits	
	mm	kg/m ³	g/mL	kg/m ³	g/mL	mm	mm	mm	mL	mL		kg/m ³
L20	335	20	0.020	100 imes 0.2	$100\times 0.000\; 2$	105	36	40	108	132	5 to 10	± 0.2
L50	335	50	0.050	100×0.5	$100\times0.000~5$	125	23	27	50	65	2 to 5	± 0.5
M50	270	50	0.050	50×1	50 imes 0.001	70	20	24	30	45	2 to 5	± 1.0
M100	250	100	0.100	50×2	50 imes 0.002	85	18	20	18	26	2 to 5	± 2.0
S50	190	50	0.050	25 imes 2	25 imes 0.002	50	18	20	18	26	2 or 3	± 2.0

Table 7 — BS hydrometers available for use in aqueous solutions of hydrochloric acid

© BSI 11-1999

Appendix C Examples of the use of Table 1 in conjunction with BS hydrometers

NOTE In these examples it has been assumed that either:

a) the readings on BS density hydrometers (or relative density hydrometers corrected to read density) have been corrected as described in Appendix A; or

b) the corrections are not significant to the accuracy required.

The hydrometer readings are therefore assumed to indicate the density of the acid solution (in kg/m^3) at the temperature of determination.

C.1 To determine the strength of an aqueous solution of hydrochloric acid

Suppose that the temperature of the solution is 25 °C and the density at that temperature (see note) is 1 096 kg/m³. Then in Table 1 under the temperature 25 °C and opposite $D_t = 1$ 096 will be found g = 20.1 and G = 220, indicating that the solution contains 20.1 g of HCl in 100 g of solution and 220 g of HCl in 1 L of solution at 25 °C.

C.2 To make up a solution containing 17.5 g of HCl in 100 g of solution

In Table 1 under t = 20 °C the value of D_t corresponding to g = 17.5 g is 1 085 kg/m³. Water should therefore be mixed with a more concentrated solution of hydrochloric acid, checking the density of the diluted acid with a BS hydrometer during the dilution, until the hydrometer indicates that the density is approaching 1 085 kg/m³. At this stage and before making the final adjustment, the temperature of the solution is taken. Suppose it is 25 °C; then from Table 1 the value of D_t corresponding to g = 17.5 g in the column headed 25 °C is 1 083 kg/m³. The solution at 25 °C should therefore be adjusted so that a BS hydrometer indicates that its density is 1 083 kg/m³ (see note). The solution thus obtained will contain 17.5 g of HCl in 100 g of solution.

C.3 To make up a solution containing 234 g of HCl in 1 L of solution at 20 $^\circ\mathrm{C}$

From Table 1 under the heading 20 °C it is found that a solution containing 234 g of HCl per litre has 21.1 g of HCl per 100 g of solution. Therefore the required solution is made up as in C.2 using g = 21.2.

Publications referred to

BS 718, Specification for density hydrometers.

BS 733, Pyknometers³⁾.

ISO 650, Relative density 60/60 °F hydrometers for general purposes³).

ISO 905, Hydrochloric acid for industrial use — Evaluation of hydrochloric acid concentration by measurement of density³⁾.

ISO 1768, Glass hydrometers — Conventional value for the thermal cubic expansion coefficient (for use in the preparation of measurement tables for liquids)³⁾.

³⁾ Referred to in the foreword only.

BSI — British Standards Institution

BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: 020 8996 9000. Fax: 020 8996 7400.

BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: 020 8996 9001. Fax: 020 8996 7001.

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre. Tel: 020 8996 7111. Fax: 020 8996 7048.

Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: 020 8996 7002. Fax: 020 8996 7001.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained.

If permission is granted, the terms may include royalty payments or a licensing agreement. Details and advice can be obtained from the Copyright Manager. Tel: 020 8996 7070.

BSI 389 Chiswick High Road London W4 4AL